
	
	

Centre	de	Recherche	en	économie	de	
l’Environnement,	de	l’Agroalimentaire,	des	
Transports	et	de	l’Énergie	

Center	for	Research	on	the	economics	of	the	
Environment,	Agri-food,	Transports	and	
Energy	

	

_______________________	
de	Palma	:		Professor	at	the	Department	of	Economics	and	Management,	École	Normale	Supérieure	de	Cachan,	Paris,	France.	
Ordás	Criado:	Professor	at	the	Department	of	Economics,	Université	Laval	and	CREATE,	carlos.ordas@ecn.ulaval.ca	
Randrianarisoa:		Postdoctoral	Fellow	at	Sauder	School	of	Business,	University	of	British	Columbia,	Vancouver,	BC,	Canada.	
	
	
Les	cahiers	de	recherche	du	CREATE	ne	font	pas	l’objet	d’un	processus	d’évaluation	par	 les	pairs/CREATE	
working	papers	do	not	undergo	a	peer	review	process.	
	
ISSN	1927-5544	

	

	
When	Hotelling	meets	Vickrey:	Service	timing	and	spatial	

asymmetry	in	the	airline	industry		
	 	

André	de	Palma	
Carlos	Ordás	Criado	

Laingo	M.	Randrianarisoa	
	

Cahier	de	recherche/Working	Paper	2017-1	

	

	

Janvier/January	2017	

	 	

	 	

	



When Hotelling meets Vickrey
Service timing and spatial asymmetry in the airline industry∗
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Abstract

This paper analyzes rivalry between transport facilities in a model that in-
cludes two sources of horizontal differentiation: geographical space and depar-
ture time. We explore how both sources influence facility fees and the price of
the service offered by downstream carriers. Travellers’ costs include a fare, a
transportation cost to the facility and a schedule delay cost, which captures the
monetary cost of departing earlier or later than desired. One carrier operates
at each facility and schedules a single departure time. The interactions in the
facility-carrier model are represented as a sequential three-stage game in fees,
times and fares with simultaneous choices at each stage. We find that duopolis-
tic competition leads to an identical departure time across carriers when their
operational cost does not vary with the time of day, but generally leads to dis-
tinct service times when this cost is time dependent. When a facility possesses a
location advantage, it can set a higher fee and its downstream carrier can charge
a higher fare. Departure time differentiation allows the facilities and their car-
rier to compete along an additional differentiation dimension that can reduce or
strengthen the advantage in location. By incorporating the downstream carriers
into the analysis, we also find that a higher per passenger commercial revenue
at one facility induces a lower fee charged by both facilities to their carrier and
a lower fare charged by both carriers at their departure facility, while a lower
marginal operational cost for one carrier implies a higher fee at its departure
facility, a lower fee at the other facility served by the rival carrier and a lower
fare at both facilities.
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1 Introduction

Since the deregulation of the airline market in the US in the mid ’70s and in Europe in
the ’90s, rivalry between airports and their carriers has intensified. Travellers located
in populous regions often have the opportunity to choose between multiple airports for
a given destination. While considerable theoretical literature is devoted to analyzing
rivalry in prices and service frequency across facilities supplying perfect substitutes,
a fundamental aspect of the air travel market has received less attention: departure
time competition. The convenience of schedules is of great concern for travellers. For
carriers, service timing provides an additional differentiation dimension that can be
strategic for competition. Transportation authorities stand to benefit from improved
understanding of the role played by service scheduling in deregulated markets.

We propose a facility-carrier model to study how facility fees, carrier fares and de-
parture times are set when geography gives more market power to one of the facilities
and their carriers. Hotelling (1929) has been widely used in industrial organization
to study spatial competition and the level of product diversity provided by an imper-
fectly competitive market. Concurrently, since Vickrey (1969), time costs have become
fundamental components to model firms’ and consumers’ timing decisions (travel, de-
parture or arrival times). Consumers’ value of time and schedule delays, defined as the
difference between the desired and the actual departure/arrival/total time, are widely
used for modelling congestible infrastructures. The costs related to the timing of the
service is also central in carriers’ planning. Our paper appears to be the first to attempt
bringing these two frameworks together, by considering spatial differentiation and a
location game in departure times into the same model in order to analyze consumer
behaviour and the pricing and schedule decisions of rival facilities and their carriers.

Research explicitly recognizes that the airline market operates under different forms
of imperfect competition and that pricing the access to the facilities (through a con-
gestion toll or slot1 management) is an efficient way to address congestion.2 De Palma
and Leruth (1989) and De Borger and Van Dender (2006) investigate the capacity and
price decisions of congestible facilities selling perfect substitutes in duopolistic markets
by using sequential capacity-price games. Van Dender (2005) explores how duopolistic
providers of perfect substitutes with fixed capacities set prices when access to each
facility is subject to road congestion. While the aforementioned studies consider the
facilities as final service providers, Basso and Zhang (2007) analyze rivalry between
congestible facilities in "a vertical structure". They consider the facilities as input
providers (upstream firms) that reach final consumers only through carriers (down-
stream firms). In their setup, carriers may possess market power in the output market,

1A slot is defined as the entitlement to use a runway at a particular time.
2See De Borger et al. (2007); De Borger and Proost (2012) regarding the strategic pricing and

capacity decisions of governments in congested infrastructures, and Zhang and Czerny (2012) for a
recent literature review focusing on airports and airlines.
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and the characteristics of this market affect the pricing and capacity decisions of facil-
ities. They show that duopoly facilities have lower fees than the monopolist but lower
frequencies (service quality), depending on the timing of the fee-capacity decisions.
They also compare the capacity and service frequency decisions of the monopolist with
those of the social planner and find that, conditional on facility fees, the optimal de-
cisions coincide only if carriers operate in perfectly competitive markets. Brueckner
(2002, 2009) and Pels and Verhoef (2004) extend the theory of congestion pricing de-
veloped for road traffic to congested airports3 when the final service providers − the
carriers who want to depart/land at peak hours − have market power. Verhoef (2010)
looks into alternative instruments (such as slots sales and slots trading). Thus, under-
standing carriers’ scheduling decisions requires taking into account their time-related
operational costs, which we do.

Since Vickrey (1969), consumers’ valuation of time has become under more intense
scrutiny in theoretical and applied transportation economics work. When pertaining
to air travel, the pioneering papers are Douglas and Miller (1974) and Panzar (1979).
Panzar proposes a spatial model with free entry in which two profit-maximizing air-
lines each operate a single flight and consumers’ generalized costs depend on fares,
flight frequency and schedule delay costs.4 The analysis focuses on fares and frequency
equilibria but ignores departure time competition. A few papers explicitly incorpo-
rate departure time rivalry into the analysis. Encaoua et al. (1996) are the first to
consider a time-then-fare game in a carrier network involving two direct and one in-
direct connection between three cities. Assuming uniform desired departure times for
the travellers over the time of day and quadratic schedule delay costs, various Nash
equilibria in fares and departure times are characterized and minimum differentiation
in schedules is established in selected configurations. Under the same assumptions
regarding travellers’ schedule delay costs, Lindsey and Tomaszewska (1999) consider
a sequential model where multiple service times are chosen before fares on a city pair
route served by two airlines. A multinomial random utility model captures the utility
of travellers across alternatives. Predatory behaviours, in which an airline attempts to
hurt (potential) rivals, are also investigated. They show that predatory fare cutting is
less effective than a predatory schedule but the outcome depends on the prey’s schedule
response. Their results rely on numerical simulations. More recently, Van der Weijde
et al. (2014) investigate the schedule decisions of two duopolistic travel operators by
using a horizontal differentiation model with price-sensitive demands and asymmetric
(piecewise linear) schedule delay costs. Departure times are treated as locations on a
fixed time interval and each operator schedules a single time of departure. A thorough

3The main costs associated with airport congestion are: increased access time/cost for travellers,
slots shortage, take-off queues, landing delays for the carriers (which, in turn, impose inconvenience
to travellers).

4Schedule delay costs designate the monetary costs associated to departing or arriving earlier/later
than desired.
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analysis of time-fare games with separated and covered markets is proposed. Assuming
uniform desired times for consumers, they show that the simultaneous game has no
equilibrium. Only if one operator sets its fare and departure time before the other
can an equilibrium exists. The time-then-fare game also has a stable equilibrium in
fares and times, and results in services scheduled closer than socially optimal but not
necessarily in minimum differentiation. As the authors state, one drawback of their
analysis is that most equilibrium expressions have no intuitive interpretation.5

A number of researchers6 have evaluated passengers’ value of time in air trans-
portation empirically, relative to other characteristics of the trip. They all confirm
that travel demand is linked to the timing of the service (arrival or departure time)
or to total travel time, in addition to the cost/time to access the departure facility
and to other characteristics of the trip. The principle of minimum differentiation7 in
departure times has been empirically tested in commercial aviation for the US and
Norwegian markets by Borenstein and Netz (1999) and Salvanes et al. (2005) before
and after airline deregulation. Both researches conclude that time differentiation was
reduced after deregulation.

Our work is in the vein of the spatial approaches. It borrows "the vertical struc-
ture" proposed by Basso and Zhang (2007) in a spatial setting but drops the congestion
components to include schedule decisions in the spirit of Van der Weijde et al. (2014).
Another distinguishing feature of our model is that it posits the existence of a spatial
asymmetry in the location of one of the facilities. Closer proximity of travellers to
a primary facility (and to their carriers) typically results in a spatial advantage with
respect to a rival secondary facility settled in a remote place, due to the transportation
costs incurred by travellers. Similarly, the costs/constraints faced by the carriers in the
timing of the service may lead to different departure times, which may hurt a carrier
(and its departure facility) if the schedule is less convenient to travellers. In commercial
aviation, peak/off-peak charges and slots acquisition costs can be sizeable components
of airlines’ operational costs in congested airports.8 Our model allows these time costs

5To circumvent the intractability of the spatial approaches in dealing with the timing of the service
in theoretical models, Brueckner and Flores-Fillol (2007) and Brueckner (2010) propose to study
scheduling competition through frequency competition between suppliers in fare-frequency games.
They consider that individuals care for overall flight frequency rather than individual departure times.
Higher frequencies are valued by passengers since they imply a broader range in choice of departure
times. Thus, schedule delay costs are inversely related to frequencies.

6See, among others, Pels et al. (2000, 2003); Adler et al. (2005); Brey and Walker (2011).
7See De Palma et al. (1985) for a theoretical discussion of the minimum differentiation principle

under heterogeneity in consumers’ tastes. This work also considers a model with two types of hori-
zontal differentiation: along a line and along a circle. The cylinder model was studied by Ben-Akiva
et al. (1989).

8Worldwide airports are classified by the International Air Transport Association (IATA) into
three categories. Level 1 and 2 airports, also called non-coordinated and schedule facilitated airports,
designate facilities where capacity adequately meets demand and slots are freely set by airlines. Level 3
airports, also called fully coordinated airports, are those where demand exceeds capacity and the slot
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to differ across downstream firms and to impact their fare and schedule decisions.
In addition, while the previous literature considering departure time games assumes
evenly distributed desired times for consumers throughout the time of day, our setup
remains agnostic about the shape of this distribution. To keep the analysis tractable,
we assume that only one carrier serves each facility at a single time. Transport facil-
ities earn their revenue from services offered to their carriers and from rights granted
to external firms to provide on-site services to travellers (often called commercial rev-
enues). These commercial revenues can seriously impact facility charges.9 Thus, we
also account for them when we model facility decisions.

The interactions in the vertical facility-carrier model are represented by a three-
stage game with simultaneous decisions at each stage. In the first stage, two profit-
maximizing facilities located in a linear city set the per passenger fees they charge to
their carrier and announce their operating hours. Then, knowing the fee charged at
their facility, the downstream carriers choose their departure time. Given departure
times, carriers set their fare in the last stage. Consumers decide whether or not to
travel and if so, which facility they depart from. The game is solved by backward
induction and results in a subgame perfect Nash equilibrium.

The paper is organized as follows. Section 2 solves the sequential game by starting
from the end of the game. Section 2.1 characterizes consumers’ demand for the final
service. Section 2.2 examines the carrier rivalry subgame assuming either exogenous
or endogenous service times and establishes carriers’ equilibrium fare, departure time,
demand and profit. Section 2.3 focuses on the facility-rivalry subgame and charac-
terizes facilities’ equilibrium fee, demand and profit. We analyze the socially optimal
location of the facilities and departure times in Section 3. The last two sections provide
simulation results and a summary of our main findings along with possible extensions.

2 The Model

In a linear city of unit length, potential consumers are uniformly distributed with a
density of one consumer per unit of length. Two facilities (i = 0, 1) serve the city and
a single carrier at each facility schedules a homogeneous service at time Ti during the
operating hours of its departure facility. The opening and closing times of the facilities,
denoted T , T ∈ ]0, 24[, are exogenously set and such that T < T .10 Facility 0 is located

allocation is resolved through the IATA Scheduling Process. Secondary airports are mainly classified
into level 1 or 2.

9In airports, commercial revenues typically include retailing, advertising, car parking, car rentals
and banking. The importance of non-aeronautical revenues (or concessions) in airport profitability
have been studied by Zhang and Zhang (1997, 2003) and Oum et al. (2004). See Zhang and Czerny
(2012) for a recent discussion on how concession revenues affect private and public airport behaviours.

10Opening and closing hours of the facilities play no major role in our analysis, but they are included
to identify where they could affect our setup.
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at point h, with h ∈ [0, h], h < 1, and facility 1 is located at the end of the city at 1.
The location of the facilities is given. In this setting, facility 0 and its carrier have a
location advantage in the sense that, for equal prices, facility 0 faces a higher demand
than its competitor. In what follows, we will mainly think of the service as being a
trip or flight, carriers as airlines, facilities as airports and consumers as travellers.

2.1 Consumer choice

We assume that consumers select one airport and a flight on the basis of fare p̂i,
transportation costs and schedule delay costs that capture the monetary value of the
inconvenience caused by departing earlier or later than desired. Consumers’ desired
departure times, denoted by t, are heterogeneous and distributed according to a strictly
positive density ρ(t) on the [0, 24] time interval (referred to as the time line below).
We denote by F (t) the related cumulative distribution function (or CDF). Departure
times are given to consumers and can differ across carriers. The total cost or "full
fare" of the service for a potential consumer located at x ∈ [0, 1], selecting facility i
and with desired departure time t, is given by:

p̂i + Ĉ(Ti, t) +
θ

2
d2
i (x),

where p̂i ≥ 0 is the fare at facility i and θ ∈ [θ, θ] ⊂ R+ is the transportation cost
per unit of squared distance, denoted d2

i (x), between consumer’s location at x and
facility i’s location where d2

0 = (x − h)2 and d2
1 = (1 − x)2. From the consumers’

perspective, a quadratic transportation cost is justified when the marginal disutility to
access the transport facility increases with distance. This cost is also quite common
to model firms that locate apart from a rival over a linear geographic market.11 Term
Ĉ(Ti, t) ≡ Ĉi captures the schedule delay cost (in monetary units) incurred by a trav-
eller for consuming the service offered at time Ti by the carrier operating at facility i.
We assume that consumers’ schedule delay cost function is piecewise linear in t:

Ĉ(Ti, t) = β̂(t− Ti)1t≥Ti + γ̂(Ti − t)1t<Ti ,

where β̂ ∈ [β, β] ⊂ R+ represents the unit cost of departing earlier than desired,
γ̂ ∈ [γ, γ] ⊂ R+ is its late counterpart and function 1A is an indicator function that
equals 1 if condition A is satisfied and 0 otherwise. Without loss of generality we posit

11 In the Hotelling framework, quadratic transportation costs lead to firms that locate apart from
each other when locations are chosen prior fares, and to linear and continuous demands and concave
profits in both prices at any firm location, see D’Aspremont et al. (1979). This is not the case
when consumers’ transportation cost is linear. See Anderson (1988) for a thorough treatment of
‘linear-quadratic’ transport costs. Regarding the impact of non-uniform consumer densities on the
agglomeration or deglomeration forces driving firms’ location, see Anderson et al. (1997).
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that departing early is less costly than departing late for travellers, i.e., β̂ < γ̂.12 A
travel service (toward the same destination) is not necessarily scheduled at the same
time of day across facilities. We treat in the text the case T0 ≤ T1.13 This departure
time configuration allows to classify the travellers according to their departure time
preferences into three categories: those with t ≤ T0 who prefer to depart earlier than
the earliest service offered in the city, those with t ∈]T0, T1[ who may incur early or
late schedule delay depending on the chosen facility, and those with t ≥ T1 who prefer
to depart later than the latest service offered.

Figure 1: Traveller’s schedule delay costs

γ̂T1

γ̂T0

0
T TT0 t̃ T1 24

Ĉ(T0, t)
Ĉ(T1, t)

− γ̂

− γ̂

β̂̂

β

Figure 1 shows the schedule delay costs faced by a consumer for carrier 0 departing
at time T0 and carrier 1 at time T1. A traveller with desired time t = 0 (resp. t = 24)
incurs the largest schedule delay cost at the facility offering the latest (resp. earliest)
departure, i.e., facility 1 (resp. facility 0). The schedule delay cost is null at a facility
when consumers desired time matches the time scheduled at that facility (Ti = t), and
equal across facilities when consumers desired time equals the cost-weighted average
t̃ = (β̂T0 + γ̂T1)/(β̂ + γ̂).

If the service is consumed, the net benefit of travelling for a consumer with desired
time t, located at x ∈ [0, 1], and departing facility i is given by:

Ûi = Û − p̂i − Ĉ(Ti, t)−
θ

2
d2
i , i = 0, 1,

where Û represents the gross benefit of the trip in monetary units and p̂i + Ĉ(Ti, t)
is the ‘service cost’ incurred by the consumer for buying from carrier i, net of her
transportation cost to reach the departure facility. We assume that consumer prefer-
ences for departure times are independent of the location in the city.14 The indifferent

12This assumption guarantees the existence of a price equilibrium in the model of bottleneck con-
gestion for auto commuting, see Arnott et al. (1993). Small (1982) finds that this assumption is
empirically valid for work trips. The evidence for air travel is more mixed, see Lijesen (2006); War-
burg et al. (2006); Brey and Walker (2011) or Koster et al. (2014).

13The case T0 ≥ T1 is equally valid and developed in Appendix C. We will appeal to it when
necessary. The schedule differences arising from the model are discussed in detail in the time game.

14This is consistent with Brey and Walker (2011) who find that party size and time zone change
are the most influential variables of departure time preferences in air travel.
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consumer x̃(t) is determined by equalizing Û0 with Û1, that is:

x̃(t) =
p̂1 + Ĉ(T1, t)

θ(1− h)
− p̂0 + Ĉ(T0, t)

θ(1− h)
+

1 + h

2
. (1)

The number of consumers with desired time t going to facility 0 (rather than 1) de-
creases in the service cost of its carrier (p̂0 + Ĉ0), increases in the service cost of the
carrier operating at the rival facility (p̂1 + Ĉ1) and increases with h if the inter-facility
transportation cost is larger than the difference in service costs between facility 0 and
facility 1.15 Furthermore, a higher transportation cost parameter (θ) induces more con-
sumers at facility 0 and less of them at the other facility if the service cost at facility 1
is larger, i.e., p̂1 + Ĉ1 > p̂0 + Ĉ0.

Figure 2: Indifferent consumer along the geographic line

10 h x̃(t)

Û

$

p̂0 + Ĉ(T0, t)

Û

$

p̂1 + Ĉ(T1, t)

Figure 2 shows the indifferent consumer along with its full fare on the geographic
line for facility 0 located at x = h and facility 1 located at x = 1. In order for everyone
to consume, the gross benefit of the trip of each consumer must offset the full fare at
one of the facilities. We say that the market is covered for any given location of the
facilities and for any given departure time of their carrier if everyone consumes and
if a strictly positive fraction of consumers depart each facility whatever their desired
departure time. To ensure that the market is covered, it suffices that the consumers
located at x = 0 (resp. x = 1) with desired departure time t = T1 (resp. t = T0)
chooses facility 0 (resp. facility 1), or

−θ
2

(1− h2) < p̂1 − p̂0 − β̂(T1 − T0) ≤ p̂1 − p̂0 + γ̂(T1 − T0) <
θ

2
(1− h)2. (2)

The first inequality states that the service cost at facility 0 shall not be too large
to induce those situated at x = 0 with desired time T1 or later to depart facility 0.

15 To show this, set ∂x̃(t)/∂h > 0 and rearrange to get θ2 (1− h)2 > (p̂0 + Ĉ0)− (p̂1 + Ĉ1). Note that
setting x̃(t) > h yields the same result. In contrast to the Hotelling model with linear transportation
costs, our setup allows potential consumers located at the left-hand side of facility 0 on the geographic
line to consume the homogeneous product at facility 1 if its service cost is low enough.
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The last inequality requires the inter-facility transportation cost to be large enough to
lead those located at x = 1 with desired time T0 or earlier to depart facility 1. Both
conditions are maintained hereafter.16 Fig. 3 illustrates the covered market condition
and establishes the link between the geographic and time dimensions.

Figure 3: Indifferent consumer and the time line

t

x̃(T0) 1x̃(T1) h
x(t)0

T0

T1

24

D1(t)

D0(t)

−(β̂ + γ̂)

For given fares, departure times, parameters and given a desired time t, the travellers
located to the left-hand side (LHS) of the solid black indifference line on Fig. 3 depart
facility 0 and those to the right-hand side (RHS) depart facility 1. By way of example,
when the indifferent consumer prefers departing at time T0 or earlier, x̃(t) = x̃(T0) and
a larger share of consumers choose facility 0 located at x = h and a positive fraction of
them, 1− x̃(T0), leave from facility 1 located at x = 1. Integrating over the geographic
space for any given t, we get the demand functions D0(t) = x̃(t) and D1(t) = 1− x̃(t).
The broken shape of the indifference line is related to the piecewise schedule delay cost
function Ĉi(Ti, t). When p̂0 (resp. p̂1) increases, all else equal, the indifference line
moves to the LHS (resp. RHS). From Fig. 3, we deduce the following lemma.

Lemma 1. If the consumers located at x = 0 (resp. x = 1) with desired departure
time t = T0 (resp. t = T1) select facility 1 (resp. facility 0), then no consumer chooses
facility 0 (resp. facility 1).

Given a density ρ(t) of desired departure times, aggregating the individual demands
over the geographic and time lines, we obtain the following the market demand at each

16See Appendix B.2 for the derivation of the covered market condition (2). This condition could be
relaxed to allow all travellers with desired departure time t ≥ T1 (resp. t ≤ T0) to depart facility 1
(resp. facility 0). These situations are not analyzed here but Appendix B.7 discusses the parameter
conditions under which these cases are more likely to happen.
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facility:17

D0(p,T) =

∫ 24

0

x̃(t)ρ(t) dt = p1 − p0 +
1 + h

2
+ Φ(T),

D1(p,T) = 1−D0(p,T),

(3)

where p ≡ (p0, p1) with p0 = p̂0/θ(1− h), p1 = p̂1/θ(1− h) and T ≡ (T0, T1). In what
follows, we often divide the fares and schedule delay cost parameters by θ(1− h) and
‘drop the hats’ to get more compact expressions.18 Term Φ(T), defined as

Φ(T) = γ(T1 − T0)m` + (βT0 + γT1)mc − β(T1 − T0)mr − (β + γ)t̄c (4)

with β = β̂/θ(1 − h) and γ = γ̂/θ(1 − h), captures the (normalized) difference in
schedule delay costs (shorthanded SDC hereafter) at the market level and aggregates
the individual SDC differences between facility 1 and facility 0 through the shares
m` =

∫ T0
0
ρ(t)dt, mc =

∫ T1
T0
ρ(t)dt and mr =

∫ 24

T1
ρ(t)dt, and through an average desired

time t̄c =
∫ T1
T0
tρ(t)dt. Clearly, a positive (resp. negative) term Φ(T) gives facility 0

(resp. facility 1) and its carrier a SDC advantage that renders facility 0 (resp. facility 1)
more attractive to travellers. When T0 = T1 = T , the SDC advantage is null, i.e.,
Φ(T, T ) = 0. As the SDC term will play a central role in the analysis, the following
lemma mentions some of its properties.

Lemma 2. Consider a travel service scheduled at time T0 (resp. T1) at facility 0 (resp.
facility 1) with T0 ≤ T1. Let F(t) be the CDF of consumers desired departure time with
t ∈ [0, 24]. Then:

ΦT0 = β − (β + γ)m`, ΦT1 = γ − (β + γ)mr,

ΦT0,T0 = −(β + γ)ρ(T0) < 0, ΦT1,T1 = (β + γ)ρ(T1) > 0,

where ΦTi ≡ ∂Φ(T)/∂Ti and ΦTi,Ti ≡ ∂2Φ(T)/∂Ti
2. Setting ΦTi larger than zero yields

ΦT0 > 0 iff T0 < F−1

(
β

β + γ

)
, ΦT1 > 0 iff T1 > F−1

(
β

β + γ

)
.

Proof. See Appendix B.3.
Lemma 2 establishes that function Φ(T) is concave in T0 and convex in T1 and Ap-

pendix C.3 further shows that it remains so when T0 ≥ T1. Then, the SDC advantage
of facility 0 increases/decreases in T0 when the service scheduled by its carrier is be-
low/above the β/(β + γ)-th quantile of consumers desired departure time distribution.

17 As shown in Fig. 3, the integrand x̃(t) in (3) is piecewise linear on the time segments [0, T0], ]T0, T1[
and [T1, 24] which implies integrating a different expression on each subdomain. See Appendix B.1
for a detailed derivation of the market demands.

18The scaling by 1/θ(1− h) is innocuous in all derivations.

10



When facility 0’s SCD advantage expands, more travellers choose facility 0 and less of
them depart facility 1. Similarly, the SDC disadvantage of facility 1 increases/decreases
in T1 when T1 is above/below time F−1[β/(β + γ)] and less/more travellers select fa-
cility 1. Given that β < γ, time F−1[β/(β + γ)] lies below consumers’ median desired
departure time and it will be closer to the boundaries or to the centre of the time
line depending on the shape of F (t). As the uniform distribution is often used as a
tractable benchmark in Hotelling’s settings, note that when ρ(t) = U [0, 24] then Φ(T)
becomes

ΦU(T) =
β + γ

48
T 2

1 + β(T0 − T1)− β + γ

48
T 2

0 (5)

and F−1[β/(β + γ)] = 24β/(β + γ). Furthermore, ΦU(T) is identical whether T0 ≤ T1

or T0 ≥ T1.19

We now propose some comparative statics to analyze the effects of a change in fares,
departure times and in the location advantage of facility 0 on consumer demands. We
deduce from (3) that demand at a facility decreases in the fare of its carrier and
increases in the fare of the carrier serving the rival facility. Differentiating consumer
demands with respect to Ti and h, we obtain:

∂D0(p,T)

∂Ti
= ΦTi(T),

∂D1(p,T)

∂Ti
= −∂D0(p,T)

∂Ti
for i = 0, 1,

∂D0(p,T)

∂h
=

1

2
+
p1 − p0 + Φ(T)

(1− h)
,

∂D1(p,T)

∂h
= −∂D0(p,T)

∂h
.

(6)

Demands’ sensitivity to changes in departure times follows directly from the discussion
under Lemma 2. Similarly to the results related to h under (1), setting ∂Di/∂h > 0 for
i = 0, 1 and rearranging, we can show that consumers’ demand at facility 0/facility 1
increases with h if the inter-facility transportation cost is larger/lower than the differ-
ence in average service cost between facility 0 and facility 1.20 Equalizing the departure
times and fares across carriers, D0 = (1 + h)/2 while D1 = (1− h)/2. Having charac-
terized consumers’ problem, we turn to model the competition between carriers.

2.2 Carrier-rivalry game

Two carriers compete with each other across facilities to attract consumers. This
section focuses on the time-then-fare subgame of the three-stage game. Setting depar-
ture times before fares is the most common behaviour for carriers offering (air, rail,

19That is, (4) is identical to (C.3) in the uniform case. Said differently, by using Appendix C’s
notation, we have ΦU (T) ≡ Φsym,U (T).

20 Moreover, a higher transportation cost parameter induces a larger demand at facility 0 and lower
one at the other facility if the service cost of facility 1 is larger than that of facility 0. See Eqs. (B.7)
in the Appendix for further details.
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road, water) transportation services to individuals, in particular for long-distance trips.
Moreover, fares are generally easier to adjust than departure times. The two-stage de-
cision process is solved backward: we first maximize carrier profits with respect to
fares as functions of the departure times, and then analyze carrier timing decisions.

2.2.1 The fare game

Service timing in passenger transportation is often regulated by transport authorities
to improve the social welfare or to correct market failures (limited capacity of the
facilities, nuisance to neighbours, labour regulation, safety). This section analyzes
carriers’ market when departure times are given to carriers. We assume that carriers’
operational costs and facility fees are directly expressed per passenger. Furthermore,
we consider that carriers’ operational time costs along the time of day are separable
from other costs and we set carriers’ fixed cost to zero. Then, the profit function of
each carrier is:

π̂i(p,T, τ ) = (p̂i − ĉi − τ̂i)Di(p,T)− K̂(Ti), i = 0, 1, (7)

where ĉi ≥ 0 is the marginal operational cost of the carrier located at facility i, τ̂i ≥ 0 is
the per passenger fee charged by facility i to its carrier and K̂(Ti) ≥ 0 is the operational
total time cost incurred by carrier i for departing its facility at a feasible time Ti along
the day.21 Given the departure times T and the fare of their rival, each carrier sets
its fare to maximize its profit. Solving the system of first-order conditions (FOCs)
∂π̂i/∂p̂i = 0 for i = 0, 1 with respect to the fares leads to:

p∗0 =
2

3
(c0 + τ0) +

1

3
(c1 + τ1) +

3 + h

6
+

1

3
Φ(T),

p∗1 =
2

3
(c1 + τ1) +

1

3
(c0 + τ0) +

3− h
6
− 1

3
Φ(T),

(8)

where p∗i , ci and τi for i = 0, 1 stand for p̂∗i , ĉi and τ̂i divided by θ(1−h). The resulting
vector of (normalized) equilibrium fares, denoted p∗ ≡ (p∗0, p

∗
1), represents a Nash equi-

librium.22 The first two terms on the RHS of Eqs. (8) are the (normalized) marginal
costs of each carrier plus the usual duopolistic markup/markdown which is proportional
to the marginal costs of the rival carrier serving the other facility. The third terms are
a monopoly premium/penalty stemming from the location advantage/disadvantage of
the facility at which a carrier operates. The last terms represent a markdown/markup
related to the (normalized) SDC (dis)advantage of the carrier.

21Carriers’ time costs don’t play much of a role at the pricing stage but further details are provided
in the time game.

22The existence of the Nash equilibrium follows from the concavity in fares of the profit functions.
Its uniqueness and stability are easy to verify here (see Vives, 1999, pp. 47-52). Fares can also be
shown to be strategic complements in carrier decisions.
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Fare expressions (8) can be further rearranged to analyze the difference in pricing
and markup across carriers. Focusing first on the difference in (normalized) fares,
setting p∗0 strictly larger than p∗1 and rearranging yields: p∗0 > p∗1 iff

∆c̃ < h+ 2Φ(T), (9)

where ∆c̃ = (c1+τ1)−(c0+τ0) represents the (normalized) marginal costs (dis)advantage
of carrier 0 with respect to its rival at the other facility when ∆c̃ > 0 (∆c̃ < 0). Equal-
izing the departure times across facilities and assuming no location advantage23 for
facility 0 in (9), carrier 0 charges a higher fare than its rival if its marginal costs are
higher (∆c̃ < 0). In commercial aviation, this is typically the case of a legacy carrier
that competes over a shared market with a lower marginal costs carrier departing the
other facility. Setting h > 0, the location advantage of facility 0 allows its carrier to
charge a higher fare than its rival, even if it has lower marginal costs (∆c̃ > 0). Hence,
in equilibrium, a carrier benefiting from the better location of its facility and with
lower marginal costs than a rival carrier serving the other facility will charge a higher
fare than its rival, if its advantage in location is large enough. The SDC term has a
similar impact on carriers’ fare as the location advantage and can strengthen or reduce
a geographic (dis)advantage. The following proposition summarizes the above results.

Proposition 1. Consider carrier 0 (resp. 1) that compete in fares on a linear geo-
graphic market with fixed scheduled times T0 (resp. T1), with T0 ≤ T1. There exists
a unique Nash equilibrium in fares given by (8). In equilibrium, carrier 0 charges a
higher fare than its rival if (9) holds, that is, if its location and schedule delay cost
advantages offset its marginal costs advantage.

To show that Proposition 1 holds when T0 ≥ T1, use demands (C.2) in the profit
functions (7) and apply the same derivation steps. The SDC difference Φ(T) in the
related expressions will be replaced by its counterpart Φsym(T) given in Eq. (C.3).

Defining the (normalized) markup of carrier i in equilibrium as m∗i = p∗i − (ci + τi)
for i = 0, 1, setting m∗0 strictly larger than m∗1 and rearranging yields: m∗0 > m∗1 iff

∆c̃ > −h
2
− Φ(T). (10)

Assuming no location and SDC advantages, the first terms in (10) becomes positive
which means that the markup of carrier 0 exceeds its rival’s markup if its marginal
costs are lower. Further setting h > 0, the advantage in location of facility 0 allows its
carrier to receive a higher markup than its rival, even if its carrier has higher marginal
costs (∆c̃ < 0) than its competitor at the other facility. Therefore, the markup of

23In the whole paper, the expressions ‘no location advantage’ or ‘dropping the location advantage’
mean setting h = 0. Note that h = 0 implies maximum geographic differentiation between the
facilities and their carrier while T0 = T1 implies minimum schedule differentiation.
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a carrier serving a facility endowed with a better location can be higher than the
markup of the rival lower marginal costs carrier if its marginal costs disadvantage is
not excessive. Considering the full expression (10), the SDC advantage has a similar
impact on carrier markups as the location advantage and can either expand or reduce
the location advantage at facility 0.

We can explore the impact of an increase in Ti and in h on the equilibrium fares
with the following expressions:

∂p∗0
∂Ti

=
1

3
ΦTi(T),

∂p∗1
∂Ti

= −∂p
∗
0

∂Ti
, i = 0, 1, (11)

∂p̂∗0
∂h

= −θ(1 + h)

3
< 0,

∂p̂∗1
∂h

= −θ(2− h)

3
< 0. (12)

The sensitivity of the (normalized) fares to changes in departure times can be analyzed
in light of Lemma 2: p∗0 increases in T0 (resp. T1) if the service of the carrier serving
facility 0 (resp. facility 1) is scheduled earlier (resp. later) than the β/(β+γ)th quantile
of consumers’ desired time distribution. The reasoning for p∗1 is analogous. Next, notice
that (12) are calculated on p̂∗i and not on p∗i .24 As h ∈ [0, 1[, the equilibrium fares are
decreasing in h at both facilities. A shorter inter-facility distance enhance the rivalry
between the carriers and reduces the equilibrium fares at both facilities.

Substituting the equilibrium fares p∗ in consumer demands (3), carriers’ marginal
costs become explicit in the equilibrium demands, that is:

D∗0(T, τ ) =
1

6
[3 + h+ 2∆c̃+ 2Φ(T)], D∗1(T, τ ) = 1−D∗0(T, τ ), (13)

where D∗0 ∈]0, 1[ requires |1
3
[h+ 2∆c̃+ 2Φ(T)]| < 1. As outlined in Basso and Zhang

(2007), in equilibrium, the marginal costs of a carrier have the same effects on the
equilibrium demand as those of fares: higher marginal costs for a carrier induce a
lower equilibrium demand at its facility and a larger one at the rival facility. Dropping
the location and SDC advantage terms, and equalizing marginal costs across carriers,
the market demand is evenly shared across facilities, as expected. A larger demand at
a facility goes hand-in-hand with a larger markup for its carrier than its rival’s markup
at the other facility.25

Regarding the effects of a change in T0 and T1 on the equilibrium demands, one
can readily see in (13) that ∂D∗0(T, τ )/∂Ti and ∂D∗1(T, τ )/∂Ti for i = 0, 1 leads to,
respectively, ∂p∗0/∂Ti and ∂p∗1/∂Ti in (11). Thus, departure times have exactly the same
impact on the equilibrium demands as on the equilibrium fares. Next, differentiating
the equilibrium demands with respect to h, setting the resulting expression larger than

24Recall that p̂∗i = p∗i θ(1− h) and that ci, τi and Φ(T) in (8) are divided by θ(1− h). With this in
mind, derivatives (12) are straightforward.

25 To prove this, use (13), set D∗0 > D∗1 and rearrange to get (10).
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zero and rearranging, we obtain:26

∂D∗0(T, τ )

∂h
> 0 iff

θ

2
(1− h)2 > −∆̂̃c− Φ̂(T), (14)

where ∆̂̃c = θ(1− h)∆c̃ and Φ̂(T) = θ(1− h)Φ(T), and the reverse holds for ∂D∗1/∂h.
Thus, if the carrier that benefits from a location advantage (carrier 0) is more com-
petitive in marginal and schedule delay costs than its rival (both ∆̂̃c and Φ̂(T) > 0),
increasing h increases the demand at its facility at the expenses of its rival at the
other facility. If carrier 0 is less competitive in marginal and schedule delay costs
(both ∆̂̃c and Φ̂(T) < 0), increasing h increases demand at its facility if the inter-
facility transportation cost is larger than carrier 0’s marginal and schedule delay costs
disadvantages. Taking the perspective of the carrier serving the most remote facility,
carrier 1 captures part of its ‘rival’s backyard’ when h increases if its marginal costs and
SDC advantages fully compensate the transportation cost from facility 0 to facility 1.

In equilibrium, the profits (7) can be written as:

π∗i (T, τ ) = D∗2i (T, τ )−K(Ti), i = 0, 1, (15)

where π∗i = π̂i/θ(1 − h) and K(Ti) = K̂(Ti)/θ(1 − h). As expected, the equilibrium
profit of a carrier depends upon all determinants of the equilibrium demand at its
facility (in particular the equilibrium fare, the fee and the departure time set at the
other facility) minus carrier’s own total operational time costs. Ignoring the latter
term for now and setting D∗20 > D∗21 , we can readily exploit a result obtained for the
equilibrium demands under (13): π∗0 > π∗1 if the markup of carrier 0 exceeds carrier 1’s
markup. Thus, a larger markup for a carrier implies a larger demand and profit than its
rival at the other facility when carriers’ time costs are null. The following proposition
summarizes these results.

Proposition 2. Consider carrier 0 (resp. 1) departing their facility at times T0 (resp.
T1), with T0 ≤ T1 and let K(T0) = K(T1) = 0. In equilibrium, the markup fare of
carrier 0, its demand and profit are higher than its rival’s if (10) holds, that is, if
its marginal costs disadvantage does not offset its location and schedule delay costs
advantages.

Again, to prove that Proposition 2 holds when T0 ≥ T1, use the symmetric de-
mands (C.2) in the profit functions (7) and follow the same derivation steps. The SDC
difference Φ(T) is replaced by its counterpart Φsym(T) given in Eq. (C.3).

Turning to the comparative statics of the profits with respect to Ti and h, we get:

∂π∗i (T, τ )

∂Tj
=

2

3
ΦTjD

∗
i (T, τ )− ∂K(Ti)

∂Ti
, for i, j = 0, 1 and for i 6= j, (16)

26Replacing the difference in carriers’ marginal costs by the difference in fares, (14) is identical to
∂D0(p,T)/∂h in Eqs. (B.7) of the Appendix.
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∂π̂∗0(T, τ )

∂h
=
θ

3

[
−(1 + 3h)

2
+ ∆c̃+ Φ(T)

]
D∗0(T, τ ),

∂π̂∗1(T, τ )

∂h
=
θ

3

[
3h− 5

2
−∆c̃− Φ(T)

]
D∗1(T, τ ).

(17)

Regarding the impact of a change in the departure times on carrier profits in (16),
ignoring ∂K(Ti)/∂Ti, we notice that sgn (∂π∗i /∂Tj) = sgn

(
ΦTj

)
. Hence, Lemma 2

applies again. The effect of the location of facility 0 on carrier profits is explored
through the "competition" and "demand" effects.27 Whether an increase in demand
at one facility compensates the decrease in the fare of its carrier when h increases
depends on the relative (dis)advantages identified above. Fig. 4 summarizes the net
effect of a RHS move of h on carrier profits along the ∆c̃ line.

Figure 4: Effect on π∗i for a right move of h.

3h−5
2
− Φ(T) 1+3h

2
− Φ(T)

↓ π̂∗0, ↑ π̂∗1 ↓ π̂∗0, ↓ π̂∗1 ↑ π̂∗0, ↓ π̂∗1
∆c̃

Assuming strictly positive transportation cost parameter θ and equilibrium demands,
we can focus on the terms within brackets in (17) to determine under which conditions
the demand effect dominates the competition effect when h expands. We deduce that
π̂∗0 increases in h if ∆c̃ > (1 + 3h)/2 − Φ(T). Hence, carrier 0 needs a large marginal
costs advantage (∆c̃ > (1 + 3h)/2) to increase its profit when h increases, unless
its SDC advantage is large enough (Φ(T) > (1 + 3h)/2). The same interpretation
holds regarding the condition needed for the profit of carrier 1 to increase in h, i.e.,
∆c̃ < (3h− 5)/2− Φ(T).

Having characterized carriers’ problem with exogenous departure times, we proceed
to consider the time game for a simultaneous choice of the departure times.

2.2.2 The time game

At this stage, departure times become strategic variables for the carriers and accounting
for their operational time costs is fundamental to understand their schedule decisions.

Scheduling a transport service at the most appropriate time of the day is a central
element of carriers’ planning. In commercial aviation, a large number of operational re-
search professionals have been developing methods to optimize airline schedules since
the 1950s. Etschmaier and Mathaisel (1985) describe the simplest model solved in
mathematical programming as follows: given (i) a set of demand functions and associ-
ated revenues for every passenger origin-destination pair market over the time of day

27The competition and demand effects related to h are given by ∂π̂∗
i

∂h = D∗i
∂p̂∗i
∂h + (p̂∗i − ̂̃ci)∂D∗

i

∂h .
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(and the day-of-week of the planning cycle), (ii) route characteristics (distance, times
and operating restrictions), (iii) aircraft characteristics and operating costs, and (iv)
operating and managerial constraints; find a set of flights with associated assignments
of aircraft and times of departure and arrival which maximize profits. In every day’s
operations, optimized schedules are rarely executed as planned due to unexpected
disruptions of the transport service (weather conditions, unscheduled maintenance,
unavailable crews, congested airports) that propagate through the network. Account-
ing explicitly for these uncertainties and network effects goes beyond the scope of our
model so we focus on the most relevant features that our setup can capture. Clearly,
carriers are not always free to locate their departure or arrival times where they wish
on the 24-hour clock and departure/arrival times are often constrained to lie during
facilities operating hours (night operating restrictions). Scheduling a transport service
at a specific time of the day may be more or less costly in terms of logistics, and may
depend on carriers’ business model.28 The timing of the service can also be subject
to important direct costs, such as peak/off-peak charges or slot acquisition costs in
congested or coordinated airports, which add up to other operational costs that do not
depend directly on the time of departure (fuel, overflight charges).29

We assume that carriers can decompose their operational time costs K(Ti) addi-
tively into a fixed component and a cost that varies along the time of day over all
feasible service times Ti ∈ [T , T ] at their departure facility. We posit that the time-
varying component is either null or linearly increasing (or decreasing) in Ti. This
simple functional form allows to explore analytically the effect of the marginal time
costs on carriers’ timing decisions.

28 In air transportation, low-cost airlines typically serve short haul (<3h), point-to-point routes
from/to secondary (and less congested) airports while legacy carriers generally operate medium (3h-
6h) or long haul (>6h) flights in hub-and-spoke networks connected to primary (and more congested)
airports. The business of low-cost airlines is often characterized by a more intense daily use of their
fleet as compared to legacy carriers, shorter turnaround time between operations, and aircraft and
crew returned to a base airport, which reduces aircraft maintenance costs or overnight accommodation
costs, see IATA (2005) or Gross and Schroeder (2007). This, in turn, favours the scheduling of flights at
the earliest and latest available times at the airports they serve; see Bley and Buermann (2007, pp.59-
62) for a discussion on the strategic use of schedules by low-cost airlines to reduce their operational
costs.

29 Peak/off-peak landing or taking off fees are usually charged per weight and/or aircraft type.
Greater Toronto Airports Authority (2016) charges to fixed wing aircrafts of 19000 kg (or less) a
fee of $145 per 1000 kg of maximum permissible takeoff weight during the peak period (Mon-Fri
0700-1000 & Sun-Fri 1430-2100) while the non-peak period fee is $82.50 per 1000 kg. The process for
acquiring a slot under IATA regulation is described in Ulrich (2008) and Gillen (2008), and involves
a well regulated but complex bargaining process between parties (slot coordinator, carriers, airport
authorities) that results in slot swaps between carriers, leases, new slot allocation or slot trading
depending on the regulatory frameworks. These costs are far from being negligible at congested or
coordinated airports. As reported by Done (2008), Continental Airlines paid $116m for its summer
slots at Heathrow and planned further $93m in winter.
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Figure 5: Carriers’ operational time costs as a function of the time of day
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Fig. 5 shows the case of a linear and increasing time cost along the time of day
for the carrier serving facility 0, and a linearly decreasing one for the carrier operating
at facility 1. Clearly, a positive marginal time cost for a carrier favours a departure
time closer to the opening hour of its facility while a negative one favours a service
scheduled closer to the closing hour. Heterogeneity in consumers’ desired time may
prevent such extreme outcomes. Other configurations of marginal time costs (such as
positive or negative for both carriers) follow the same reasoning. Let carriers’ total
operational time costs be given by:

K(T0) = K0 + k0 T0, with K0 ≥ 0, k0 6= 0, T0 ∈ [T , T ],

K(T1) = K1 + k1 T1, with K1 ≥ 0, k1 6= 0, T1 ∈ [T , T ],
(18)

where K(Ti) = K̂(Ti)/θ(1 − h) and assume that the facilities set their opening and
closing hours to allow their carrier to depart at their optimal time along the day, i.e.,
T and T are not binding. Given the endogenous fares (8), we can focus on maximizing
profits (15) with respect to Ti. Combining (16) with (18) and assuming for now the
existence of interior and unique solutions on [0, 24], setting ∂π∗i /∂Ti = 0 for i = 0, 1
yields the following first-order conditions (FOCs):

∂π∗0(T, τ )

∂T0

=
2

3
[β − (β + γ)m`]D

∗
0(T, τ )− k0 = 0,

∂π∗1(T, τ )

∂T1

= −2

3
[γ − (β + γ)mr]D

∗
1(T, τ )− k1 = 0,

(19)

and, by rearranging these expressions, we can characterize the candidate departure ti-
mes by the following implicit functions:

F (Ti) =
β

β + γ
− 3ki

2(β + γ)D∗i (T, τ )
, i = 0, 1, (20)

where F (T0) ≡ m`, F (T1) ≡ 1−mr and ki = ∂K(Ti)/∂Ti denotes carrier i’s (normal-
ized) marginal time cost along the time of day. The second-order conditions (SOCs)
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that need to be satisfied are:

∂π∗20 (T, τ )

∂T 2
0

= −2

3
(β + γ)ρ(T0)D∗0(T, τ ) +

2

9
[β − (β + γ) m`]

2 < 0,

∂π∗21 (T, τ )

∂T 2
1

= −2

3
(β + γ)ρ(T1)D∗1(T, τ ) +

2

9
[γ − (β + γ) mr]

2 < 0.

(21)

Consider first the case where carriers’ time cost is constant along the time of day
(ki = 0 for i = 0, 1). FOCs (20) lead to the best timing response functions of each
carrier to their rival’s schedule, and solving these yields:

F (T0) = F (T1) =
β

β + γ
⇒ T ∗|k0=k1=0 = F−1

(
β

β + γ

)
. (22)

Clearly, the response functions in (22) are identical across carriers and depend only
on consumers’ unit schedule delay costs and on the CDF F (t). As the equilibrium
departure time of a carrier does not depend on the schedule of its rival, each carrier
has a dominant strategy which represents a unique and interior Nash equilibrium.
Carrier 0 schedules its service to maximize its SDC advantage while carrier 1 set its
departure time to minimize its SDC disadvantage. Moreover, the last RHS terms in the
SOCs (21) is null when the FOCs are satisfied and the parameter restrictions below (13)
become D∗0(T∗, τ ) ∈ ]0, 1[ if |1

3
[h+ 2∆c̃]| < 1. When these restrictions hold and given

that ρ(Ti), β and γ are positive, this solution maximizes carrier profits.30

Turning to the case where carriers’ time costs vary with the time of day (ki 6= 0
for i = 0, 1), assuming that the solution of system (20) − a system of two nonlinear
functions in Ti − yields a unique intersection at coordinate T∗ = (T ∗0 , T

∗
1 ) ∈ ]0, 24[2

with T ∗i ≡ T ∗i (τ , ki), we need to ensure that this equilibrium maximizes carrier profits.
Using the SOCs (21), the last terms on the RHS no longer vanish at the stationary
points and profit maximization requires bounded marginal time costs such that:

k2
i <

4

3
ρ(T ∗i )(β + γ)D∗3i (T∗, τ ), i = 0, 1, (23)

where ki is on both sides of the inequality. In what follows we posit that ki satisfies (23)
and yields a unique and interior Nash equilibrium.31

30When ki = 0 for i = 0, 1, it is straightforward to show that derivatives (19) are positive for all
Ti < T ∗|k0=k1=0 and negative for all Ti > T ∗|k0=k1=0, which rules out corner solutions at Ti = 0 or
Ti = 24.

31When ki 6= 0 for i = 0, 1, the existence, uniqueness and stability of the Nash equilibrium in
departure times on ]0, 24[2 must be investigated numerically. Assuming that this equilibrium exists
and is unique, setting 0 < F (T ∗i ) < 1 for i = 0, 1 we can derive bounds around ki conditional upon
D∗0(T∗, τ ) ∈ ]0, 1[ and which will depend on D∗0(T∗, τ ). These bounds are available upon request. In
Appendix B.4, we derive explicit bounds for ki as well as existence conditions for interior solutions in
departure times when ρ(t) = U [0, 24]. Section 4.2 further explores numerically the time game in the
latter context.
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Given that F (t) is a strictly increasing in its argument, we can use (20) to char-
acterize all possible schedule configurations across carriers in equilibrium with respect
to T ∗|k0=k1=0. By applying the implicit function theorem to (20), we can show that
the equilibrium departure times T ∗i for i = 0, 1 are decreasing in ki when (23) holds.32

Next, we deduce from (20) that a carrier schedules its service earlier (resp. later) than
T ∗|k0=k1=0 when its marginal time cost is positive (resp. negative), and even earlier
(resp. later) when its marginal time cost is large (resp. large in absolute value) or its
equilibrium demand at its departure facility is low. Setting F (T ∗0 ) = F (T ∗1 ), we can fur-
ther characterize the principle of minimum differentiation in schedules. When the cost-
demand ratio is equal for both carriers, i.e., when k0/D

∗
0(T∗, τ ) = k1/D

∗
1(T∗, τ ), the

carriers schedule their service at the same time, earlier than T ∗|k0=k1=0 when k0, k1 > 0
and later than T ∗|k0,k1=0 when k0, k1 < 0. This situation could arise across rival carri-
ers evenly sharing the market and facing the same marginal time cost (k0 = k1 6= 0).
Aside from the case where carriers’ marginal time cost is exactly proportional to their
equilibrium demand, we can infer from (20) that the existence of operational costs that
vary with the time of day implies distinct service times in equilibrium.33 The shape of
F (t) acts an additional agglomeration/deglomeration force driving service time loca-
tions closer/farther away from T ∗|k0=k1=0 on the time line. When the configuration of
marginal time costs induces T ∗0 ≥ T ∗1 , carrier 0 schedules its service later than carrier 1
and we need to rely on the expressions provided in Appendix C.4. Section 4.2 nu-
merically explores all combinations of positive, negative and null marginal time costs
across carriers leading to distinct service times when F (t) is uniform. The following
proposition summarizes our findings in the time game.

Proposition 3. Consider two competing carriers (i = 0, 1) which set a single simul-
taneous departure time Ti ∈]0, 24[ prior to setting fares. Assume that carriers’ time
cost is linear in the time of day, i.e., K(Ti) = Ki + kiTi for i = 0, 1. Let β (γ) with
0 < β < γ be consumers’ unit early (late) schedule delay costs. Then:

1. if carriers’ time cost is constant along the time of day, i.e., if k0 = k1 = 0, both
carriers schedule their service at the β/(β + γ)th quantile of consumers’ desired time
distribution. As these optimal departure times are strictly dominant strategies for both
carriers, the Nash equilibrium is unique and interior.

2. when carriers’ time cost varies along the time of day, if a unique Nash equilibrium
in departure times (denoted T∗) exists, carriers schedule their service at the same time
if k0/k1 = D∗0(T∗, τ )/D∗1(T∗, τ ) in (20) and at different times for all other marginal
time costs and equilibrium demand configurations.
Proposition 3.2 stresses that when ki 6= 0 for i = 0, 1, departure times are equal across
carriers only when their marginal time cost is of same proportion as the equilibrium

32That is, dT ∗i /dki < 0 for i = 0, 1, see Appendix B.5.
33Appendix B.6 characterizes more formally the differences in departure times in terms of equilib-

rium demands and marginal time costs.
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demand at their departure facility. To prove that Proposition 3 holds when T0 ≥ T1,
use the equilibrium demands (C.5) in the profit functions (15) and follow the same
derivation steps (see Appendix C.4).

Borenstein and Netz (1999) and Salvanes et al. (2005) find empirical evidence that
the principle of minimum differentiation in departure times applies in commercial avi-
ation in deregulated markets. In our duopolistic model, the difference in schedules
between rival carriers departing a different facility is small when consumers’ desired
time distribution is symmetric and tight on the time line and when carriers’ marginal
time cost is: (a) null for both carriers, (b) the same for both carriers and demand at
their departure facility is close enough, (c) of same sign across carriers and proportional
to the demand at their departure facility. Wider schedule differences arise in all other
situations. Moreover, as noted in footnote 28, logistic constraints may induce the car-
riers to schedule their service at the boundaries of the time line. In our simple setup,
several factors favour extreme service times in equilibrium. From the demand side,
we can identify a strongly asymmetric schedule delay cost function and a large mass
of consumers preferring early or late departure. Any structural parameter penalizing
demand at a facility favours an extreme departure time for its carrier when ki 6= 0.
From the supply side, we can mention a large marginal time cost (in absolute value)
along the day for a carrier.

Inserting the equilibrium service timesT∗ in demands (13) and in profits (15) yields:

D∗0(T∗, τ ) =
1

6

[
3 + h+ 2∆c̃+ 2Φ(T∗)

]
, D∗1(T∗, τ ) = 1−D∗0(T∗, τ ),

π∗i (T
∗, τ ) = Di(T∗, τ )2 −K(T ∗i ), i = 0, 1.

Having characterized carriers’ market, we turn to the facility-rivalry game.

2.3 Facility-rivalry game

Consider two facilities, with fixed capacity, that compete with each other in the fees
charged per passenger to their downstream firm. Assume that the facilities derive a per
passenger commercial revenue from services provided by concessionaires to travellers.
Without loss of generality, we set their marginal operational cost to zero and denote
their fixed cost by F̂i ≥ 0 for i = 0, 1. So, facility maximization problem reads:

max
τ̂i

Π̂i(T, τ̂ ) = (τ̂i + ω̂i)D
∗
i (T, τ )− F̂i i = 0, 1, (24)

where τ̂i ≥ 0 denotes the per passenger fee at facility i and ω̂i ≥ 0 is the per passenger
commercial revenue. In the last resolution step of the game, facilities take carrier fares
and departure times T as given. Departure times can be either given to the carriers
(as in Section 2.2.1) or optimally chosen (as in Section 2.2.2). In the latter case, when
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the time costs of a carrier vary with the time of day (ki 6= 0) its optimal departure time
in (20) is an implicit expression which depends on the (normalized) fees τ . Solving (24)
analytically is not tractable. However, in all other cases, maximizing facility profits is
straightforward and exactly follows the same resolution steps as carriers’ fare game. If
each facility simultaneously chooses its fee to maximize its profit and internalizes the
pricing of its rival facility, solving the system of FOCs with respect to the fees yields:

τ ∗0 =
1

3
[(c1 − c0)− (2ω0 + ω1)] +

9 + h

6
+

1

3
Φ(T),

τ ∗1 =
1

3
[(c0 − c1)− (ω0 + 2ω1)] +

9− h
6
− 1

3
Φ(T),

(25)

where τ ∗i and ωi are τ̂ ∗i and ω̂i divided by θ(1 − h), and τ ∗ ≡ (τ ∗0 , τ
∗
1 ) represents a

Nash equilibrium in fees.34 The optimal fee of a facility is decreasing in the marginal
operational cost of its carrier and increasing in that of the carrier serving the rival
facility. This result, identical to Basso and Zhang (2007), also stresses that a facility
captures a fraction (1/3) of its carrier’s operational cost advantage. Next, a higher
per passenger revenue at one facility induces a lower fee at both facilities.35 Notice
that, in equilibrium, a facility shares part (2/3) of its own per passenger commercial
revenue with its carrier and pushes the rival facility to reduce its fee by an amount that
is proportional to its own per passenger revenue (1/3). The h term is the monopoly
premium/penalty related to the location advantage/disadvantage of the facility and
Φ(T) captures the SDC (dis)advantage due to potential differences in service times
across carriers. Moreover, the facility fees capture the same share of the marginal
operational and SDC advantages from the carriers.

Substituting the equilibrium fees (25) into demands (13) yields:

Df,∗
0 (T) =

1

18
[9 + h+ 2(c1 − c0) + 2(ω0 − ω1) + 2Φ(T)],

Df,∗
1 (T) = 1−Df,∗

0 (T).
(26)

Ultimately, the equilibrium demand for a facility decreases in the marginal operational
cost of its carrier and in the per passenger commercial revenue of the rival facility; and
increases in the marginal operational cost of the carrier serving the rival facility, in own
per passenger commercial revenue and in the SDC advantage of its carrier. Note that,
while per passenger commercial revenues help to keep the optimal fees low at both
facilities, a per passenger commercial revenue advantage allows a facility to increase
its demand at the expense of the rival facility.

34Again, the existence, uniqueness and local stability of the Nash equilibrium in fees are easy to
demonstrate (see Vives, 1999, pp. 47-52).

35 Substituting the optimal fees (25) in the equilibrium fares (8), we can establish how per passenger
commercial revenues affect the equilibrium fares and carrier profits. Further replacing these fares in
the covered market condition (2) allows to express the latter condition in terms of the exogenous
parameters of the model. See Appendix B.7.
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With the above equilibrium fees and demands at hand, facility profits in equilibrium
are given by:

Π∗i (T) = 3D∗2i (T)− Fi, i = 0, 1. (27)

Similarly to the carrier market analysis, the differences in fees, demands and profits
between facility 0 and facility 1 can be analyzed as follows:

τ ∗0 > τ ∗1 iff ∆c > −h
2
− Φ(T) +

∆ω

2
,

Df,∗
0 (T) > Df,∗

1 (T) iff ∆c > −h
2
− Φ(T)−∆ω,

Π∗0(T) > Π∗1(T) iff ∆c > −h
2
− Φ(T)− 3

2
∆F −∆ω,

(28)

where ∆c = c1 − c0, ∆ω = ω0 − ω1, ∆F = F1 − F0 with Fi = F̂i/θ(1 − h). The
latter delta terms represent (normalized) costs or commercial revenue advantages for
facility 0/facility 1 when they are positive/negative while Φ(T) captures the usual
(normalized) SDC advantage. Setting h = Φ(T) = ∆ω = ∆F = 0 in (28), in equilib-
rium, facility 0 charges a higher fee and receives a larger demand and profit than its
rival when the marginal operational cost of its carrier is lower than that of the carrier
serving the rival facility. Introducing a location (or a SDC or a fixed-cost) advantage
for facility 0, a facility can charge a higher fee than its rival and get higher demand and
profit even if the marginal operational cost of its carrier is larger than that of the carrier
serving the rival facility. This happens when the marginal operational cost disadvan-
tage of its carrier is not below −h

2
(or below −Φ(T) or below −3

2
∆F , respectively).

Setting h = Φ(T) = ∆F = 0 in (28), we can focus on the effect of the per passenger
commercial revenue advantage on the differences in fees, demands and profits across
facilities. We deduce that a facility charges a higher fee than the rival facility if the
marginal operational cost advantage of its carrier with respect to the carrier serving
the rival facility outweighs half of its per passenger commercial revenue advantage and
a facility faces a larger demand and receives a larger profit than the rival facility if the
marginal operational cost disadvantage of its carrier with respect to the carrier serving
the rival facility offsets its per passenger commercial revenue advantage. The following
proposition summarizes the results of the facility-rivalry subgame.

Proposition 4. Consider two competing facilities (i=0,1) that set the fees charged to
their carrier with constant time costs along the time of day. Further assume that the
carriers schedule their service such that T0 ≤ T1. Then:

1. there exists a unique Nash Equilibrium in fees given by (25),

2. in equilibrium, demands and profits are given by (26) and (27), respectively. Facil-
ity 0 charges a higher fee, faces a larger demand and receives a larger profit than its
rival when the three inequalities in (28) hold.

23



To prove that Proposition 4 also holds when T0 ≥ T1, use the equilibrium demands (C.5)
in the profit functions (24) and follow the same steps. The SDC difference Φ(T) in the
related expressions will be replaced by its counterpart Φsym(T) given in Eq. (C.3).

Having characterized the duopolistic outcome of the three-stage game, we now
explore regulator’s problem.

3 Regulator’s problem

We now determine the location of the facilities and departure times that minimize
the social costs (or, equivalently, maximize the social welfare). In the transportation
industry, the location of the facilities is often decided by regional authorities in or-
der to minimize consumer access costs. By contrast, schedule decisions often require
broad coordination between a variety of agents (carriers, facility managers, regional
and national authorities, international transport regulator) and may need to obey in-
ternational standards. In air transportation, local and national entities decide where
to locate the airports, while IATA provides the air transport community a single set of
rules for the management of airport slots worldwide when the available infrastructure
is insufficient to satisfy airline demands. Hence, we treat the location and schedule
decisions independently of one another.36

Choosing the geographical location of firms/facilities that minimizes the average
total transportation cost is a standard social planner problem in Hotelling’s model. It
amounts to minimizing the area below the transportation cost functions in Fig. 2. As-
suming equal marginal operational costs across carriers and equal marginal commercial
revenues across facilities, the optimal location of facility 0 and facility 1 can be easily
shown to be at coordinates (1/4, 3/4) when they are simultaneously chosen, at 1/3 for
facility 0 when facility 1 is located at 1, and at (2 + h)/3 for facility 1 when facility 0
is located at h with 0 ≤ h < 1.

For the schedule regulator, minimizing the average total time cost of society (de-
noted ŜC

S
below), ignoring geographic locations, requires finding the departure time

of each carrier that minimizes the area under consumer schedule delay cost functions
in Fig. 1 plus carriers’ total time cost in (18), that is:

min
T0,T1

ŜC
S

= ŜDC
S
(T) + K̂S(T), (29)

36The scaling factor 1/θ(1− h) is not needed in this section; hence, all ‘hat’ magnitudes represent
unscaled monetary values.
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where

ŜDC
S
(T) =

∫ T0

0

γ̂(T0 − t)ρ(t) dt+

∫ t̃

T0

β̂(t− T0)ρ(t) dt + (30)∫ T1

t̃

γ̂(T1 − t)ρ(t) dt+

∫ 24

T1

β̂(t− T1)ρ(t) dt,

K̂S(T) = K̂0 + k̂0T0 + K̂1 + k̂1T1

and where T0 ≤ T1.37 Term t̃ = (β̂T0 + γ̂T1)/(β̂ + γ̂) in (30) is the abscissa of the
intersection between the dotted and the bold schedule delay cost functions in Fig. 1.
Using the same tools as in Appendix B.3, the FOCs of (29) are given by:38

∂ŜC
S
(T)

∂T0

= γ̂m` − m̃`β̂ + k̂0 = 0,
∂ŜC

S
(T)

∂T1

= m̃rγ̂ − β̂mr + k̂1 = 0, (31)

where terms m̃` =
∫ t̃
T0
ρ(t)dt and m̃r =

∫ T1
t̃
ρ(t)dt have now a familiar interpretation.

Using ρ(t) = U [0, 24] for analytical tractability, the ŜC
S
function is given by:

ŜC
S

=
γ̂(2β̂ + γ̂)T 2

0 + β̂(β̂ + 2γ̂)T 2
1 − 48β̂(β̂ + γ̂)T1 − 2β̂γ̂T0T1 + 576β̂(β̂ + γ̂)

48(β̂ + γ̂)
+ K̂S(T).

Solving the FOCs, we obtain the socially optimal departure times:

T S0 =
12β̂

β̂ + γ̂
− a0k̂0 − b0k̂1, T S1 = 12

[
1 +

β̂

β̂ + γ̂

]
− a1k̂0 − b1k̂1, (32)

where ai, bi > 0 for i = 0, 1.39 Assuming symmetric unit schedule delay costs and null
marginal time costs (β̂ = γ̂ and k̂0 = k̂1 = 0) in (32), the social planner sets T S0 = 6 (at
the first quartile of the U [0, 24] distribution) and T S1 = 18 (at the third quartile) − the
classical result of Hotelling’s simultaneous location-game with symmetric transporta-
tion costs−. Focusing on the case where k̂0 = k̂1 = 0 with β̂ < γ̂, denoting the related
socially optimal service times by T Si

∣∣
k̂0=k̂1=0

for i = 0, 1 and by using the duopolistic
equilibrium departure times in (22) with the uniform distribution, we deduce that:

∆T0 = T S0
∣∣
k̂0=k̂1=0

− T ∗|k̂0=k̂1=0 = −12
β̂

β̂ + γ̂
,

∆T1 = T S1
∣∣
k̂0=k̂1=0

− T ∗|k̂0=k̂1=0 = 12
γ̂

β̂ + γ̂
.

37The case T0 ≥ T1 is derived in Appendix C.5.
38These derivations are lengthy but straightforward. Sufficient conditions for (29) are provided in

Appendix B.8.
39To obtain TS1 in (32), note that 12

[
1 + β̂

β̂+γ̂

]
≡ 12

[
2β̂

β̂+γ̂
+ γ̂

β̂+γ̂

]
. Moreover, the ai and bi terms

are given by a0 = 12(β̂+2γ̂)

γ̂(β̂+γ̂)
> 0, b0 = a1 = 12

β̂+γ̂
> 0 and b1 = 12(2β̂+γ̂)

β̂(β̂+γ̂)
> 0.
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Hence, duopolistic competition results in service times which are later/earlier than
socially optimal at facility 0/facility 1 when the marginal time costs are null across
carriers. The schedule regulator could either impose the socially optimal service times
or equalize the marginal social time costs with carriers’ marginal time costs. Using T S0
and T S1 in (20), we get an explicit optimal pricing rule for the service times that reads:

k̂S0 =
β̂DS

0

3
, k̂S1 = − γ̂D

S
1

3
, (33)

whereDS
i ≡ D∗i (T

S, τ ) andTS ≡ (T S0
∣∣
k̂0=k̂1=0

, T S1
∣∣
k̂0=k̂1=0

). The above result indicates
that the schedule regulator should set an increasing cost in the time of day for the
carrier serving facility 0 to get the early socially optimal service time and a decreasing
one for the carrier operating at facility 1 to get the late socially optimal departure
time. The following proposition summarizes the above results.

Proposition 5. Consider a regulator that chooses the departure time of the carrier
that operates at each facility (T S0 and T S1 with T S0 ≤ T S1 ) over the [0, 24] time interval to
minimize the average total time cost (29). Assume a uniform distribution of consumers’
desired departure time. Then:

1. if the time costs of the carriers are constant along the time of day, the socially
optimal service times are such that T S0 < T ∗|k̂0=k̂1=0 < T S1 ,

2. if the time costs of the carriers vary along the time of day, the socially optimal
service time of the carriers is given by (32).

Further substituting (33) in (20) and solving for Ti, the social and private marginal
time costs coincide and each carrier schedules a socially optimal departure time. The
distributional impacts of an optimal location of facility 0 and of a socially optimal
schedule for both carriers are briefly analyzed below.

4 Numerical results

This section illustrates our analytical results. Section 4.1 focuses on the three-stage
game assuming that carriers’ time cost does not vary with the time of day. In this case,
a unique Nash equilibrium is guaranteed in each subgame and can be calculated with
the closed-form expressions given in the theoretical sections. Section 4.2 concentrates
on the carrier-rivalry game with given fees and time-varying operational costs for the
carriers. In this case, the Nash equilibria are established numerically. In all simulations,
we use the "hat notation" and express the cost parameters, fares, fees and profits in
unscaled monetary units, i.e., not divided by θ(1− h). We posit a unit transportation
cost of θ/2 = $130 which implies an inter-facility transportation cost of $73 when
facility 0 is located at h = 0.25 and facility 1 is at x = 1. Unit schedule delay costs are
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set to β̂ = $5 and γ̂ = $7 and we assume an uniform distribution U [0, 24] of consumers’
desired departure time.40 We posit a higher marginal operational cost for the carrier
serving facility 0 (ĉ0 = $10 and ĉ1 = $8) and a higher per passenger commercial revenue
for facility 0 (ω̂0 = $20 and ω̂1 = $18). One can think of carrier 0 as a legacy carrier
operating at a primary facility that competes with a lower marginal operational cost
carrier serving a secondary facility with a lower per passenger commercial revenue.
Without loss of generality, we set all fixed costs to zero (K̂i = F̂i = 0 for i = 0, 1).

4.1 Equilibria with constant time costs across carriers

Table 1 shows the equilibria of the three-stage game assuming a null marginal time cost
(k̂0 = k̂1 = 0) for each carrier.41 By Proposition 3.1, duopolistic competition drives
to an identical departure time across carriers and to a travel service scheduled in the
morning, at the quantile β̂/(β̂ + γ̂) = 5/(5 + 7) = 41.6̄% of the U [0, 24] distribution.
Thus, T ∗0 = T ∗1 = 41.6̄%× 24 = 10. This schedule strategy is dominant for both carri-
ers: given a suboptimal time for a carrier, its rival at the other facility has no incentive
to change its service time.

The first column of results (referred to as Column 1) in Table 1 illustrates the mar-
ket equilibrium when we combine minimum schedule differentiation (resulting from the
above equilibrium departure times) with maximum spatial differentiation. Then, all
else equal, we successively introduce a location advantage for facility 0 in Column 2
and a small/large SDC disadvantage for its carrier in Column 3/4. Column 5 compares
the equilibria of Columns 1 to 4 with those arising when a regulator sets the location
of facility 0 and carriers’ departure time to minimize the social costs, as discussed in
Section 3. Carriers’ marginal time cost being null here, the social time cost equals
consumers’ average total schedule delay cost. Recall that the three-stage game pre-
sumes that the departure times are simultaneously set for both carriers (endogenously
or exogenously).

Clearly, Column 1 leads to the highest fares, average transportation and time costs
for the consumers, the highest fees for the carriers and the highest profits for the
facilities and their carrier. Note that, in equilibrium, the fees differ across facilities
but the fares, demands, and profits are equal. This result may seem surprising at first
glance but it is fully consistent with our main propositions.42

40 These unit schedule delay costs’ values are slightly lower than those used in Van der Weijde et al.
(2014) but closer to the willingness to pay found by Brey and Walker (2011) for air travellers. Also,
recall that when t is uniform, Φ̂(T) ≡ Φ̂sym(T). Thus, the price, demand and profit functions of each
carrier and facility remain identical whether T0 ≤ T1 or T0 ≥ T1.

41 For each column of Table 1, the reader can verify that the covered market condition (2) and
all theoretical results hold. In particular, all differences in equilibrium prices, demands and profits
between facilities and between carriers can be analyzed in light of our propositions.

42Propositions 1, 2 and 4.2 are particularly easy to verify in the context of Column 1. By way
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Table 1: Market and regulated equilibria with null marginal costs

T ∗0 = T ∗1 = 10 T ∗0 = T ∗1 = 10 T0 = 7 ; T ∗1 = 10 T0 = 0 ; T ∗1 = 10 TS0 = 5 ; TS1 = 17
h = 0 h = 0.25 h = 0.25 h = 0.25 hS = 0.33

Φ̂ = 0 Φ̂ = 0 Φ̂ = −2.25 Φ̂ = −25 Φ̂ = 6
Facilities
(τ̂∗0 ; τ̂∗1 ) (370, 372) (280.6, 266.4) (279.9, 267.1) (272.3, 274.7) (252.9, 231.7)

(Π̂∗0, Π̂
∗
1) (195, 195) (154.5, 138.2) (153.7, 139.0) (146.0, 146.5) (142.5, 119.3)

Carriers
(p̂∗0, p̂

∗
1) (510, 510) (390.8, 369.2) (389.8, 370.2) (379.7, 380.3) (353.8, 323)

(π̂∗0 , π̂
∗
1) (65, 65) (51.5, 46.1) (51.2, 46.3) (48.7, 48.8) (47.5, 39.8)

Consumers
(D∗0 ;D∗1) (0.5, 0.5) (0.514, 0.486) (0.513, 0.487) (0.499, 0.501) (0.522, 0.478)
Schedule delay cost† 35 35 28.11 26.49 17.5
Transportation cost† 10.83 5.25 5.25 5.25 4.82
Total Cost 45.83 40.25 33.36 31.74 22.32

Notes: All simulations assume that t ∼ U [0, 24], β̂ = 5, γ̂ = 7, θ
2

= 130, ĉ0 = 10, ĉ1 = 8, k̂0 = k̂1 = 0, ω̂0 = 20,
ω̂1 = 18, K̂i = F̂i = 0 for i = 0, 1. †The average total schedule delay and transportation costs of consumers are
computed from a regulator’s perspective.

In Column 2, we introduce a location advantage for facility 0 that represents 25% of
the total market size. As compared to Column 1, consumers’ average total transporta-
tion cost is lower from a regulator standpoint (75% of the travellers are now closer
to facility 0) and the average total schedule delay cost remains the same as service
times are not affected. Carrier fares and facility fees decrease in h due to the rise in
competition while consumers’ demand at facility 0/facility 1 raises/falls. The profits
of the facilities and their carrier decrease along h. This is expected at facility 1 as the
optimal fare, fee and demand all drop when h increases. At facility 0, the decrease
in profits stresses that the competition effect dominates the demand effect. Note that
introducing a location advantage that benefits facility 0 and its carrier hurts more the
profit of their rivals (-7.8% for facility 0 and its carrier and -13.8% for their rivals).
Fig. 6 confirms the latter results43 and shows that the fare and profit of carrier 0 are

Figure 6: Carrier fares, profits as a function of h when service times are equal
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of example, note that ∆ĉ = −∆ω̂ < −∆ω̂/2. Proposition 4.2 implies Df,∗
0 = Df,∗

1 , Π̂∗0 = Π̂∗1 and
τ̂∗0 < τ̂∗1 , which corresponds to the simulation results.

43 Facility plots are not shown due to space constraints but they are similar to carrier plots (up to
a vertical shift).
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always above those of its rival along h. This need not always be the case (see below).
Fig. 7 illustrates how a deviation from the optimal departure time for one carrier

affects carrier profits. The LHS plot shows the profits of both carriers for T0 ∈ [0, 24]
when T ∗1 = 10. Carrier 0’s profit decreases for any deviation from T ∗0 while carrier 1’s
profit increases. Note that a deviation of 10 hours to the LHS or RHS of T ∗0 = 10
would allow carrier 1 to make a higher profit than its rival despite carrier 0’s location
advantage. Taking the perspective of carrier 1 on the RHS plot in Fig. 7, carrier 1’s
profit decreases as T1 deviates from T ∗1 = 10 while carrier 0’s profit increases.

Figure 7: Carrier profits as a function of departure times
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In Column 3 (resp. 4), carrier 0 is given a departure time 3 (resp. 10) hours
earlier than its optimal departure time which induces a "small" (resp. "large") SDC
disadvantage for that carrier (and for its departing facility). As compared to Column 2,
the average total schedule delay cost is lower from a regulator viewpoint (the departure
times are now different across facilities) without affecting consumers’ transportation
costs. The equilibrium demand, prices and profits at facility 0 all fall and those at
facility 1 all rise. These results are related to Lemma 2 through Eqs. (11) and (16). In
equilibrium, any deviation from the optimal departure time for a carrier decreases its
fare, demand and profit as well as the fee, demand and profit of its departure facility
and benefits the rival carrier and facility. Note that Fig. 6 remains valid in the context
of Column 3: the competition effect dominates the demand effect along h and the
profit of carrier 0 remains above that of carrier 1 when h increases. However, in the
context of Column 4, demand, prices and profits at facility 0 fall slightly below those
at facility 1. Fig. 8 shows that the competition effect dominates the demand effect in
Column 4 as well, but the location advantage must be large enough (slightly above
25%) for the profits and prices at facility 0 to be larger than those at facility 1. This
underlines the importance of the spatial advantage for the profitability of a facility and
a (less cost-effective) carrier when the departure times are not optimal.

Turning to the regulated framework of Section 3, the optimal location of facility 0
on the geographic space (given facility 1 located at 1) is at 1/3 and the socially optimal
departure times, given by (32), are T S0 = 5 and T S1 = 17. As expected, consumers’ total
costs are the lowest from the regulator standpoint in Column 5 of Table 1. Demand
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Figure 8: Carrier fares, profits as a function of h when departure times are strongly
differentiated
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at facility 0/facility 1 increases/decreases as its location and SDC advantages/disadvantages
are now larger. The fees, fares and profits all decrease.

4.2 Equilibria with time-varying costs across carriers

This section focuses on the carrier-rivalry game and investigates all marginal time
cost pairs of the set k̂0 × k̂1 with k̂i = {−1, 0, 1} for i = 0, 1 that lead to distinct
(profit-maximizing) departure times.44 To further highlight demand’s role on schedule
differentiation, we also study the equilibria obtained assuming k̂0 = k̂1 > 0, k̂0 = k̂1 < 0
and k̂i = −k̂−i > 0 for i = 0, 1. Facility fees are set to τ̂0 = $280, τ̂1 = $266 (as in
Column 2 of Table 1) and we assume that both facilities operate 24h/day.

Fig. 9 shows the best response functions of each carrier to their rival’s schedule,
denoted BRi(k̂i), i = 0, 1, for the above combinations of marginal time costs.45 The
"NE" intersections are Nash equilibria in departure times such that T ∗0 < T ∗1 (T ∗0 > T ∗1 )
when they are above (below) the T0 = T1 diagonal. Table A.1 in Appendix A provides
the numerical values of the departure times, fares, demands and profits related to
Fig. 9, along with equilibria obtained with alternative unit schedule delay costs.

When the marginal time cost is null for both carriers, their reaction functions
BR0(k̂0 = 0) and BR1(k̂1 = 0) are constant and intersect at point NE(k̂0 = k̂1 = 0)=
(10, 10). When the time cost increases in the time of day for carrier 0, its reaction
function, denoted BR0(k̂0 = +1), moves leftwards and becomes convex in the departure
time of its rival. The intersection between BR0(k̂0 = +1) and BR1(k̂1 = 0) yields a
unique Nash equilibrium NE(k̂0 = +1, k̂1 = 0) = (4, 10). Hence, carrier 0 schedules

44 The reader can check that the existence conditions, multiplied by the positive scaling factor
θ(1−h), hold. That is (B.11) yields −241.9 < ∆̂̃c = −16 < 193.13, (B.12) leads to −2.01 < k̂0 < 1.57,
−1.88 < k̂1 < 1.48 and (B.13) is given by 0 < 5 < 195/24 = 8.125 and 7 > 0.

45 Fare reaction functions are not plotted here but they are as expected (linearly increasing in the
fare of the rival carrier and intersecting on R2

+).
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its service earlier in the morning while carrier 1 departs at 10. The remaining Nash
equilibria can be analyzed similarly.

Figure 9: Nash Equilibria in service time and reaction functions for the carrier-rivalry
game
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Notes: all simulations assume: h = 0.25, t ∼ U [0, 24], β̂ = 5, γ̂ = 7, θ
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= 130,
ĉ0 = 10, ĉ1 = 8, τ̂0 = 280, τ̂1 = 266, K̂i = 0 for i = 0, 1.

Consider the case where the marginal time cost is the same across carriers and differ-
ent from zero (k̂0 = k̂1 6= 0). These equilibria lie along the dotted lines T ∗i (k̂0 = k̂1 < 0)

and T ∗i (k̂0 = k̂1 > 0), close to the T0 = T1 diagonal. Both services are scheduled
later/earlier than 10 when the time costs decrease/increase in the time of day. As car-
rier 1 always receives a lower demand in equilibrium (see Table A.1), its departure time
moves farther away to the RHS of 10 than that of its rival when the marginal time costs
are negative (then, T ∗0 < T ∗1 ), and farther away to the LHS of 10 when the marginal
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time costs are positive (then, T ∗0 > T ∗1 ). The proximity of the lines T ∗i (k̂0 = k̂1 < 0)

and T ∗i (k̂0 = k̂1 > 0) to the diagonal T0 = T1 is due to the closeness of the equilibrium
demand of the carriers. By contrast, when the marginal time cost is of same mag-
nitude across carriers but of different sign, larger (and asymmetric) differentiation in
schedules occurs, see the dotted lines T ∗i (k̂0 = −k̂1) and T ∗i (−k̂0 = k̂1).46

Finally, notice in Fig. 9 that any small deviation from the equilibrium for a carrier
along its reaction function drives its departure time back to the initial equilibrium.
When a carrier schedules its service slightly earlier/later than optimal, its rival responds
by scheduling its service slightly earlier/later as well. This situation being suboptimal
for both carriers, the subsequent time adjustments push the schedules back to the
initial Nash equilibrium. This confirms the stability in schedule competition of the
carrier-rivalry game and stresses that service times are strategic complements.

All the above reasonings remain valid when consumers’ unit schedule delay costs are
symmetric or when the postulated asymmetry is reversed. Table A.1 in Appendix A
numerically illustrates these two cases for β̂ = γ̂ = 7 and when β̂ = 7 > γ̂ = 5. As-
suming a null marginal time cost for both carriers, the former case leads to services
scheduled at the median consumers’ desired time, at 12, while the latter one yields
services scheduled in the afternoon, at 14. All the other results are as expected.

5 Conclusion

This paper proposes a framework to analyze the rivalry in prices and in service times
between facilities, for the case in which the facilities provide an input to downstream
firms that sell the final service to consumers (vertical structure) at a specific time
of day. The model allows (i) asymmetries in the location of the facilities along the
geographic space and in consumers’ valuation of schedule delays (schedule delay costs),
(ii) a general distribution of consumers’ desired service time and (iii) heterogeneous
operational costs related to the timing of the service along the time of day for the
downstream firms. This setup is used to analyze the competition between a primary
airport and its carrier, conveniently located in a linear city, and a rival secondary
airport and its carrier located in a remote place (the extremity) of the city. We assume
that each carrier schedules a single flight toward the same destination, operates alone
at its airport and sets a single departure time.

We find that accounting for the costs incurred by the carriers in the timing of

46 When k̂0 = −k̂1 = 1.13, then T ∗0 = 3.4, T ∗1 = 17, p̂∗0 = 390.8 and p̂∗1 = 368.2, and the larger term
within inequality (2) is close to the upper bound. Similarly, when −k̂0 = k̂1 = 1.13, then T ∗0 = 16.6,
T ∗1 = 3, p̂∗0 = 390.8 and p̂∗1 = 368.2, and the lower term within inequality (C.4) is close to its lower
bound. Thus, T ∗i (k̂0 = −k̂1) and T ∗i (−k̂0 = k̂1) are bounded within the [0, 24]2 space to ensure a
covered market.
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the service is essential for identifying the level of differentiation in departure times in
duopolistic airline markets: (i) when the operational cost of the carriers does not vary
with the time of day, the travel service is offered at the same time, (ii) when this cost
varies with the time of day and is identical across carriers, differences in equilibrium
demands across facilities suffice to generate (moderately) distinct departure times,
(iii) when this cost varies with the time of day and differs across carriers, the travel
service is generally scheduled at a different time by each carrier and the level of schedule
differentiation is proportional to the marginal time cost faced by the carriers and to
facility demands. By letting the distribution of consumers’ departure time unspecified,
we show explicitly how this distribution interacts with consumers’ valuation of schedule
delays and carriers’ marginal time cost to determine the optimal service times, fares,
fees, demands and profits at each airport.

The paper also identifies all price markups of the vertical structure. In equilibrium,
we establish that a higher per passenger commercial revenue at one airport induces
a lower per passenger fee charged by both airports to their carrier and a lower fare
charged by both carriers at their departure airport. A lower marginal operational cost
for one carrier implies a higher fee charged at its departure airport, a lower fee at
the other airport served by the rival carrier and a lower fare at both airports. When
an airport is more conveniently located for travellers, it can set a higher fee and its
downstream carrier can charge a higher fare. Differentiation in departure times allows
the airport and its carrier to compete in an additional differentiation dimension that
can reduce or strengthen the advantage in location.

This model could be extended in a number of directions. Stackelberg games would
clearly refine our results regarding strategic behaviours. Considering heterogeneous
transportation costs toward the facilities would allow to better characterize the role
played by the location advantage. Allowing a wider range of departure times in the
spirit of Lindsey and Tomaszewska (1999) would help to design realistic schedule poli-
cies to improve the social welfare. Future research may want to consider price-elastic
demands for the individual consumers as in Van der Weijde et al. (2014) and to conduct
simulations based on more realistic distributions of travellers’ desired service time as
our simulations focus on the uniform shape.
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A Table A.1 of Section 4.2

Table A.1: Carrier-rivalry equilibria with time-varying marginal costs for the carriers

T0 ≤ T1

Carrier marginal time costs

k̂0 = 0 k̂0 = 0 k̂0 = +1 k̂0 = +1 k̂0 = −1

k̂1 = 0 k̂1 = −1 k̂1 = 0 k̂1 = −1 k̂1 = −1

β̂ = 5, γ̂ = 7

(T ∗0 , T
∗
1 ) (10, 10) (10, 16.4) (4, 10) (4.2, 16.2) (15.8, 16.2)

(p̂∗0, p̂
∗
1) (390.3, 368.7) (393.7, 365.3) (387.3, 371.7) (390.7, 368.3) (390.7, 368.3)

(D∗0, D
∗
1) (0.514, 0.486) (0.532, 0.468) (0.499, 0.501) (0.516, 0.484) (0.516, 0.484)

(π̂∗0, π̂
∗
1) (51.6, 46.0) (55.2, 59.1) (44.5, 49.0) (47.8, 61.8) (67.8, 61.8)

β̂ = 7, γ̂ = 7

(T ∗0 , T
∗
1 ) (12, 12) (12, 17.5) (6.9, 12) (7, 17.3) (17.0, 17.3)

(p̂∗0, p̂
∗
1) (390.3, 368.7) (393.2, 365.8) (387.7, 371.3) (390.6, 368.4) (390.6, 368.4)

(D∗0, D
∗
1) (0.514, 0.486) (0.529, 0.471) (0.501, 0.499) (0.516, 0.484) (0.516, 0.484)

(π̂∗0, π̂
∗
1) (51.6, 46.0) (54.6, 60.7) (42.1, 48.5) (44.9, 63.0) (68.9, 63.0)

β̂ = 7, γ̂ = 5

(T ∗0 , T
∗
1 ) (14, 14) (14, 20.4) (8, 14) (8.2, 20.2) (19.8, 20.2)

(p̂∗0, p̂
∗
1) (390.3, 368.7) (393.7, 365.3) (387.3, 371.7) (390.7, 368.3) (390.7, 368.3)

(D∗0, D
∗
1) (0.514, 0.486) (0.532, 0.468) (0.499, 0.501) (0.516, 0.484) (0.516, 0.484)

(π̂∗0, π̂
∗
1) (51.6, 46.0) (55.2, 63.1) (40.5, 49.0) (43.8, 65.8) (71.8, 65.8)

T0 ≥ T †1
Carrier marginal time costs

k̂0 = 0 k̂0 = 0 k̂0 = −1 k̂0 = −1 k̂0 = +1

k̂1 = 0 k̂1 = +1 k̂1 = 0 k̂1 = +1 k̂1 = +1

β̂ = 5, γ̂ = 7

(T sym,∗0 , T sym,∗1 ) (10, 10) (10, 3.6) (16, 10) (15.8, 3.8) (4.2, 3.8)
(π̂sym,∗0 , π̂sym,∗1 ) (51.6, 46.0) (55.2, 39.1) (64.5, 49.0) (67.8, 41.8) (47.8, 41.8)

β̂ = 7, γ̂ = 7

(T ∗0 , T
∗
1 ) (12, 12) (12, 6.5) (17.1, 12) (17, 6.7) (7, 6.7)

(π̂sym,∗0 , π̂sym,∗1 ) (51.6, 46.0) (54.6, 36.7) (66.1, 48.5) (68.9, 39.0) (44.9, 39.0)

β̂ = 7, γ̂ = 5

(T sym,∗0 , T sym,∗1 ) (14, 14) (14, 7.6) (20, 14) (19.8, 7.8) (8.2, 7.8)
(π̂sym,∗0 , π̂sym,∗1 ) (51.6, 46.0) (55.2, 35.1) (49.0, 68.5) (71.8, 37.8) (43.8, 37.8)

Notes: all simulations assume: h = 0.25, t ∼ U [0, 24], θ2 = 130, ĉ0 = 10, ĉ1 = 8, τ̂0 = 280, τ̂1 =

266, K̂i = 0 for i = 0, 1. † The equilibrium fares (p̂∗0, p̂
∗
1) and demands (D∗0, D

∗
1) when T0 ≥ T1

are identical to those reported in the same column for T0 ≤ T1 due to ΦU (T) ≡ Φsym,U (T).
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B Derivations assuming T0 ≤ T1

B.1 Demands (3)

The net benefit of travelling from each facility for a consumer located at x ∈ [0, 1] with
desired time t ∈ [0, T0] is given by:

Û `
0 = Û − p̂0 −

θ

2
(x− h)2 − γ̂(T0 − t),

Û `
1 = Û − p̂1 −

θ

2
(1− x)2 − γ̂(T1 − t),

where superscript ` designates magnitudes related to consumers with t at the LHS of
T0. Solving Û `

0 − Û `
1 for x leads to the indifferent consumer:

x̃` =
1

θ(1− h)
[p̂1 − p̂0 + γ̂(T1 − T0)] +

1 + h

2
. (B.1)

As consumers are uniformly distributed with density one (f(x) = 1) on x ∈ [0, 1],
consume a single unit of the good, and given a distribution ρ(t) of desired departure
times, market demands for those with t ∈ [0, T0] are given by:

D`
0 =

∫ T0

0

∫ x̃`

0

f(x)ρ(t) dxdt = x̃`
∫ T0

0

ρ(t) dt

=

[
p1 − p0 + γ(T1 − T0) +

1 + h

2

]
m`, (B.2)

D`
1 = m` −D`

0 =

[
p0 − p1 − γ(T1 − T0) +

1− h
2

]
m`,

wherem` denotes the share of consumers with t ∈ [0, T0] as defined under (4). Following
the same reasoning for the consumers with t ∈]T0, T1[, we get:

Û c
0 = Û − p̂0 −

θ

2
(x− h)2 − β̂(t− T0),

Û c
1 = Û − p̂1 −

θ

2
(1− x)2 − γ̂(T1 − t),

x̃c(t) =
1

θ(1− h)
(p̂1 − p̂0) +

β̂T0 + γ̂T1 − (γ̂ + β̂)t

θ(1− h)
+

(1 + h)

2
; (B.3)

Dc
0 =

∫ T1

T0

x̃c(t)ρ(t) dt =

[
p1 − p0 + (γT1 + βT0) +

1 + h

2

]
mc − (β + γ)t̄c, (B.4)

Dc
1 = mc −Dc

0 =

[
p0 − p1 − (γT1 + βT0) +

1− h
2

]
mc + (β + γ)t̄c,
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where superscript c designates magnitudes related to consumers with t between T0

and T1, mc is the share of consumers with t ∈]T0, T1[ and t̄c is the expected desired
departure time defined under (4). Turning to those with t ∈ [T1, 24], we get:

Û r
0 = Û − p̂0 −

θ

2
(x− h)2 − β̂(t− T0),

Û r
1 = Û − p̂1 −

θ

2
(1− x)2 − β̂(t− T1),

x̃r =
1

θ(1− h)
[p̂1 − p̂0 − β̂(T1 − T0)] +

(1 + h)

2
; (B.5)

Dr
0 = x̃r

∫ 24

T1

ρ(t) dt =

[
p1 − p0 − β(T1 − T0) +

1 + h

2

]
mr, (B.6)

Dr
1 =

[
p0 − p1 + β(T1 − T0) +

1− h
2

]
mr,

where superscript r designates magnitudes related to consumers with t at the RHS of
T1 and mr is the share of consumers with t ∈ [T1, 24] as defined under (4). Aggregating
the demands over the entire [0,24] segment − setting D0 = D`

0 +Dc
0 +Dr

0, using (B.2),
(B.4) and (B.6) and recalling that m`+mc+mr = 1 − we get D0 in (3). Further using
the covered condition, we get D1 = 1−D0.

Focusing on the SDC difference term (4), by collecting the T0 and T1 terms and
dispatching the average central terms t̄c, we obtain:

Φ(T) = (γm` + γmc − βmr)T1 − γt̄c︸ ︷︷ ︸
CM1

− [(γm` − βmc − βmr)T0 + βt̄c]︸ ︷︷ ︸
CM0

,

where CM
i is the average normalized schedule delay cost difference related to each

departure time Ti for i = 0, 1. Then, given that Φ(T) =
[
ĈM

1 − ĈM
0

]
/θ(1− h), by

using (3), setting ∂D0/∂η > 0 with η = {h, θ} and rearranging, we get:

∂D0(p,T)

∂h
> 0 iff

θ

2
(1− h)2 > (p̂0 + ĈM

0 )− (p̂1 + ĈM
1 ),

∂D0(p,T)

∂θ
> 0 iff p̂1 + ĈM

1 > p̂0 + ĈM
0 ,

(B.7)

where (p̂0+ĈM
0 )−(p̂1+ĈM

1 ) ≡ −(p̂1−p̂0)−Φ̂(T) and ∂D1(p,T)/∂η = −∂D0(p,T)/∂η.
The link between (B.7) and the results under (1) should be clear.

B.2 Covered market condition (2)

To establish market conditions which guarantee that 0 < x̃(t) < 1 for t ∈ [0, 24],
use (B.1), (B.3) and (B.5) and note that x̃`(t) ≤ x̃c(t) ≤ x̃r(t). Then, setting
0 < x̃`(t) ≤ x̃r(t) < 1 yields (2).
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B.3 Proof of Lemma 2

To compute ∂Φ(T)/∂Ti for i = 0, 1, note first that:

∂ml

∂T0

= ρ(T0),
∂mc

∂T0

= −ρ(T0),
∂mr

∂T0

= 0,
∂t̄c
∂T0

= −T0ρ(T0),

∂ml

∂T1

= 0,
∂mc

∂T1

= ρ(T1),
∂mr

∂T1

= −ρ(T1),
∂t̄c
∂T1

= T1ρ(T1).

Using the above, we obtain:

∂Φ(T)

∂T0

= β − (β + γ)m`,
∂Φ(T)

∂T1

= γ − (β + γ)mr, (B.8)

∂2Φ(T)

∂T 2
0

= −(β + γ)ρ(T0),
∂2Φ(T)

∂T 2
1

= (β + γ)ρ(T1), (B.9)

where we use mc + mr = 1 − m` to get ∂Φ(T)/∂T0 and m` + mc = 1 − mr to
get ∂Φ(T)/∂T1. Setting each first derivative in (B.8) equal to zero leads to the depar-
ture times T ∗0 = T ∗1 = F−1[β/(β + γ)], where we use γ/(β + γ) = 1 − β/(β + γ) to
obtain T ∗1 .

B.4 Existence of a schedule equilibrium when ρ(t) = U [0, 24]

When ρ(t) = U [0, 24], by using ΦU(T0, T1) in (5) and demands (13) in carrier prof-
its (15), these profits can be shown to be two quartic functions in Ti that reads:

πi(T0, T1) = fi + eiTi + diT
2
i + bT 3

i + aT 4
i , i = 0, 1, (B.10)

where coefficients a = (β + γ)2/20736 and b = −β(β + γ)/216 are identical across
carriers and depend only on the (normalized) unit schedule delay costs, coefficients di, ei
and fi are carrier-specific and depend on T−i and other parameters of the model.47 Let
Ti, T−i ∈ R. The coefficient of leading term T 4

i being positive (a > 0), we deduce that
limTi→±∞ πi(Ti, T−i) = +∞. For a unique and interior profit-maximizing departure
time T ?i ∈]0, 24[ to exist for i = 0, 1, the profit functions need to be locally concave
on [0, 24]. They must be ‘W-shaped’ and thus possess three critical points, two of
which are minima and one is a local maximum. Below we provide a set of parameter
restrictions which ensure that this local maximum exists, is unique and interior on the

47The detailed expressions of this Appendix are available upon request.

41



[0,24] time interval and yields positive profits for i = 0, 1. To establish this, we impose

(i)
∂2πi(T0, T1)

∂T 2
i

< 0, ∀Ti ∈ ]T ??i,a, T
??
i,b [ ⊂ R with Ti = 0 ∈ ]T ??i,a, T

??
i,b [,

(ii)
∂πi(T0, T1)

∂Ti

∣∣∣∣
Ti=0

> 0,
∂πi(T0, T1)

∂Ti

∣∣∣∣
Ti=24

< 0 and

(iii) πi(T0, T1)|Ti=0 > 0

for i = 0, 1. Condition (i) ensures the existence of a locally quasi-concave profit func-
tion for each carrier over the real interval [T ??i,a, T

??
i,b ] ⊂ R which includes Ti = 0. On

this interval, the first derivative of the profit function is decreasing. Condition (ii)
guarantees that this first derivative is: positive at Ti = 0, null at the local maximum
T ?i and negative on ]T ?i , 24]. This necessarily implies the existence of a single station-
ary point T ?i ∈ ]0, 24[ which is the profit-maximizing departure time for each carrier.
Condition (iii) makes sure that the maximized profit for i = 0, 1 is positive because
πi(T0, T1)|Ti=T ?i is above πi(T0, T1)|Ti=0 > 0.

Starting with (i), by (B.10) we have:

∂2πi/∂T
2
i = d̄i + b̄Ti + āT 2

i , i = 0, 1,

where the coefficient of the leading terms T 2
i is positive (ā = (β + γ)2/1728 > 0). We

need parameter restrictions which ensure the existence of two real solutions (or roots) to
∂2πi(T0, T1)/∂T 2

i = 0, denoted T ??i,a and T ??i,b and such that T ??i,a < T ??i,b and ∂2πi/∂T
2
i < 0,

∀Ti ∈]T ??i,a, T
??
i,b [. These roots are the inflection points of the quartic profit functions. A

quadratic function has two real solutions if its discriminant satisfies ∆i = b̄2 − 4ād̄i > 0.
As ā, b̄2 > 0, we can impose d̄i < 0. Term d̄i can be shown to be itself a quadratic
function in T−i such that d̄i = ¯̄di + ¯̄bT−i + ¯̄aT 2

−i with ¯̄a = −(β + γ)/5184 < 0. Let
the discriminant of d̄i be given by ∆d̄i . Setting ∆d̄i < 0 for i = 0, 1 guarantees that
sgn(d̄i) = sgn(¯̄a) and implies d̄i < 0,∀T−i ∈ R. This restriction leads to the following
first condition:

β, γ > 0, 0 ≤ h < 1, T0, T1 ∈ R and
72β2 − (β + γ)(3 + h)

2(β + γ)
< ∆c̃ <

−72β2 + (β + γ)(3− h)

2(β + γ)
.

(B.11)

Next, solving ∂2πi(T0, T1)/∂T 2
i = 0 for i = 0, 1 yields:

T ??0,a,b =
24β

β + γ
∓

√
A√

3(β + γ)
, T ??1,a,b =

24β

β + γ
∓

√
A′√

3(β + γ)

where T ??i,a < T ??i,b because

A = 24
[
24β2 + (3 + h+ 2∆c̃)(β + γ)

]
− 48β(β + γ)T1 + (β + γ)2T 2

1 > 0,

A′ = 24
[
24β2 + (3− h− 2∆c̃)(β + γ)

]
− 48β(β + γ)T0 + (β + γ)2T 2

0 > 0.
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We can further show that T ??i,a < 0 and T ??i,b > 0 when (B.11) holds so that Ti = 0 ∈]T ??i,a, T
??
i,b [

for i = 0, 1.
For satisfying (ii), note first that ∂πi(T0, T1)/∂Ti|Ti=0 = ei in (B.10) and we can

show that ei = d′i + b′T−i + a′T 2
−i with a′ = β(β + γ)/216 > 0. Then, the first

derivative of the profit function evaluated at Ti = 0 for i = 0, 1 appears to be, again,
a quadratic function in T−i and the coefficient of the leading term T 2

−i − identical
across carriers − is positive. To ensure that ei > 0, ∀T−i ∈ R, we require its discrim-
inant to be lower than zero so that sgn(ei) = sgn(a′). The same reasoning applies to
∂πi(T0, T1)/∂Ti|Ti=24 < 0. In the latter case, the coefficient of the leading term T 2

−i
can be shown to be negative (a′ = −γ(β + γ)/216 < 0) and so must be set the related
discriminant. Combining the resulting restrictions for i = 0, 1 yields to the following
set of conditions:

8γ3

3(β + γ)
− (3 + h+ 2∆c̃)γ

9
< k0 < −

8β3

3(β + γ)
+

(3 + h+ 2∆c̃)β

9
,

8γ3

3(β + γ)
− (3− h− 2∆c̃)γ

9
< k1 < −

8β3

3(β + γ)
+

(3− h− 2∆c̃)β

9
.

(B.12)

Turning to (iii), πi(T0, T1)|Ti=0 is clearly equivalent to fi in (B.10), where fi can be
shown to be a fourth-degree polynomial in T−i which does not depend on ki. Further
setting the fixed time costs Ki = 0 for simplicity, when (B.11) holds, we can show that
fi > 0 if:48

0 < β <
1

24
and γ > 0 or when β >

1

24
and γ > β(24β − 1). (B.13)

Replacing β, γ > 0 in (B.11) by (B.13) guarantees that πi(T0, T1)|Ti=0 > 0 for i = 0, 1.
To sum up, (B.11), (B.12) and (B.13) ensure the existence a unique profit-maximizing

T ?i ∈ ]0, 24[ for each carrier with positive profits. Notice that these conditions are ex-
pressed in terms of scaled parameters. In the simulations of Section 4.2 (see footnote 44
in particular) we multiply all existence conditions by θ(1 − h) to get their unscaled
counterpart. Of course, these interior solutions do not guarantee the uniqueness of
the Nash equilibrium in departure times. These additional conditions are excessively
technical. Alternatively, one can simply use the parameter values which satisfy the
existence conditions, solve system ∂πi(T0, T1)/∂Ti = 0 for i = 0, 1 and draw the time
reaction functions that fall within the [0, 24]2 space (one per carrier). This approach is
more insightful and allows to graphically explore the uniqueness of the Nash equilib-
rium and its local stability. This is the path we take in the simulations of Section 4.2.

48This result is obtained with Mathematica after solving: Reduce[fi > 0 && (B.11)]. Plotting fi for
i = 0, 1 under the above parameter restrictions yields a quartic function which is positive ∀T−i ∈ R.
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B.5 Differentiation of the FOCs (20) w.r.t. ki

To show that dT ∗i /dki < 0, rearrange first (20) as

G(Ti, ki) ≡ F (Ti) +
3ki

2(β + γ)D∗i (T, τ )
− β

β + γ
= 0.

The implicit function theorem implies that dTi/dki = −(Gki/GTi). After some algebra,
we get:

dTi
dki
≡ −Gki

GTi

=
3D∗i (T, τ )

3ki
∂D∗i (T,τ )

∂Ti
− ρ(Ti)2(β + γ)D∗,2i (T, τ )

. (B.14)

Next, we deduced from (13) that ∂D∗i (T, τ )/∂Ti = 1
3
ΦTi(T) for i = 0, 1 and by

Lemma 2 we have ΦT0(T) = β− (β+γ)m` and ΦT1(T) = γ− (β+γ)mr. Assuming the
existence of an interior and unique Nash equilibrium T∗ = (T ∗0 , T

∗
1 ), FOCs (19) satisfy

β − (β + γ)m` =
3k0

2D∗0(T∗, τ )
and γ − (β + γ)mr =

3k1

2D∗1(T∗.τ )
, (B.15)

Thus, ∂D∗i (T, τ )/∂Ti = 1
3
ΦTi(T) becomes ∂D∗i (T∗, τ )/∂Ti = ki/2D

∗
i (T

∗, τ ). Replac-
ing the latter expressions in (B.14) for i = 0, 1, the denominator of (B.14) becomes:

3k2
i

2D∗i (T
∗, τ )

− ρ(T ∗i )2(β + γ)D∗,2i (T∗, τ ), i = 0, 1. (B.16)

Assuming that (23) is satisfied in equilibrium for i = 0, 1, the above expression is
negative. That is, setting (B.16) < 0 yields (23). Thus, given that the numerator
of (B.14) is positive and its denominator is negative in equilibrium, we deduce that
dT ∗i /dki < 0.

B.6 Schedule differentiation with time-varying costs

If the solution to the system of FOCs (20) or (C.7) in the Appendix yields a unique
and interior Nash equilibrium T∗ and if the market is covered, i.e., if D∗0(T∗, τ ) =
1−D∗1(T∗, τ ) ∈ ]0, 1[, we can use these FOCs to establish the conditions under which
the equilibrium demands and carriers’ marginal time cost lead to T ∗0 Q T ∗1 . That is,
setting F (T ∗0 ) Q F (T ∗1 ) yields:

− k0

D∗0(T∗, τ )
Q − k1

D∗1(T∗, τ )
⇔ −1−D∗0(T∗, τ )

D∗0(T∗, τ )
Q −k1

k0

, (B.17)

where, slightly abusing of notation,D∗i (T∗, τ ) for i = 0, 1 is (13) if we set F (T ∗0 ) ≤ F (T ∗1 )
and (C.5) if we impose F (T ∗0 ) ≥ F (T ∗1 ). We can now analyze the above inequalities
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when k0, k1 > 0, k0 > 0 and k1 < 0, k0 < 0 and k1 > 0, and k0, k1 < 0. Rearranging
(B.17) yields:

(i) if k0, k1 > 0, D∗0(T∗, τ ) Q
k0

k0 + k1

⇒ T ∗0 Q T ∗1 ,

(ii) if k0 < 0, k1 < 0, D∗0(T∗, τ ) Q
|k0|

|k0|+ |k1|
⇒ T ∗0 R T ∗1 ,

(iii) if k0 > 0 and k1 < 0,
1−D∗0(T∗, τ )

D∗0(T∗, τ )
> −|k1|

k0

⇒ T ∗0 < T ∗1 ,

(iv) if k0 < 0 and k1 > 0,
1−D∗0(T∗, τ )

D∗0(T∗, τ )
> − k1

|k0|
⇒ T ∗0 > T ∗1 ,

where, slightly abusing of notation, D∗0(T∗, τ ) denotes (13) if F (T ∗0 ) ≤ F (T ∗1 ) and (C.5)
if F (T ∗0 ) ≥ F (T ∗1 ). Hence, in the cases (i) or (ii), the schedule differentiation pattern
depends on whether the equilibrium demand D∗0(T∗, τ ) is lower than, equal to or larger
than the marginal time cost shares k0/(k0 + k1) or |k0|/(|k0| + |k1|). Cases (iii) and
(iv) highlight that k0 > 0 and k1 < 0 necessarily leads to T ∗0 < T ∗1 while k0 < 0 and
k1 > 0 implies T ∗0 > T ∗1 .

B.7 Substituting the equilibrium fees in the equilibrium fares
and in the covered market condition

Substituting the fees (25) in the fares (8) and rearranging yields:

p∗∗0 =
1

9
[(5c0 + 4c1)− (5ω0 + 4ω1)] +

18 + 2h

9
+

4

9
Φ(T),

p∗∗1 =
1

9
[(4c0 + 5c1)− (4ω0 + 5ω1)] +

18− 2h

9
− 4

9
Φ(T).

(B.18)

Hence, in equilibrium, a lower marginal operational cost for one carrier at a facility
induces a lower fare at both facilities; a higher per passenger commercial revenue at one
facility reduces fare charged by both carriers at their departure facility. Substituting
the fees (25) in carrier markups, m∗∗i = p∗i − (ci + τ ∗i ) for i = 0, 1 leads to:

m∗∗0 =
1

9
[(c1 − c0) + (ω0 − ω1)] +

9 + h

18
+

1

9
Φ(T),

m∗∗1 =
1

9
[(c0 − c1) + (ω1 − ω0)] +

9− h
18
− 1

9
Φ(T).

(B.19)

Thus, a lower marginal operational cost for one carrier induces a higher markup for that
carrier and a lower markup for the rival carrier serving the other facility. Similarly, a
higher per passenger commercial revenue at one facility induces a higher markup for its

45



carrier and a lower markup for the rival carrier serving the other facility. Furthermore,
by using (B.19), we can rewrite (10) in terms of commercial revenues as:

m∗∗0 −m∗∗1 > 0 iff ∆c > −h
2
− Φ(T)−∆ω, (B.20)

where ∆c = c1 − c0 and ∆ω = ω0 − ω1. Recall that ci and ωi for i = 0, 1 are ĉi and ω̂i
divided by θ(1− h).

Moreover, when the marginal time cost of the carriers is null (k̂0 = k̂1 = 0) or
when the departure times are given to the carriers, we can substitute the fares (B.18)
in (2) and express explicitly the covered market condition in terms of the exogenous
parameters of the model. Recalling that p̂∗∗i = θ(1− h)p∗∗i , note first that:

p̂∗∗1 − p̂∗∗0 =
1

9
[(ĉ1 − ĉ0) + (ω̂0 − ω̂1)− 8Φ̂(T)− 4hθ(1− h)]. (B.21)

Substituting (B.21) in (2), the covered market condition (2) becomes:

− θ

2
(1− h)(9 + h) <

∆ĉ+ ∆ω̂ − 8Φ̂(T)− 9β̂(T1 − T0) ≤ ∆ĉ+ ∆ω̂ − 8Φ̂(T) + 9γ̂(T1 − T0)

<
θ

2
(1− h)(9− h),

(B.22)

with ∆ĉ = ĉ1 − ĉ0, ∆ω̂ = ω̂0 − ω̂1. Further replacing T by T∗, one can get rid of
the endogenous departure times. Sticking to the exogenous departure times’ case, we
notice that the market is more likely to be covered when θ is large, h, β̂, γ̂ are low,
∆ĉ ≈ −∆ω̂ and when Φ̂(T) ≈ 0.

B.8 Social time cost minimization (29)

Using the first derivatives (31), we deduce the following second and cross-partial deriva-
tives:

∂2ŜC
S
(T)

∂T 2
0

= (β̂ + γ̂)ρ(T0)− β̂2

β̂ + γ̂
ρ(t̃),

∂2ŜC
S
(T)

∂T 2
1

= (β̂ + γ̂)ρ(T1)− γ̂2

β̂ + γ̂
ρ(t̃),

∂2ŜC
S
(T)

∂Ti∂T−i
= − β̂γ̂

β̂ + γ̂
ρ(t̃) for i = 0, 1.

Setting the second derivatives larger than 0 and rearranging yields:

∂2ŜC
S
(T)

∂T 2
0

=
(β̂ + γ̂)2

β̂2
>

ρ(t̃)

ρ(T0)
,

∂2ŜC
S
(T)

∂T 2
1

=
(β̂ + γ̂)2

γ̂2
>

ρ(t̃)

ρ(T1)
.
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Minimization requires the determinant of the Hessian matrix to be positive, i.e.,

2β̂γ̂ρ(T0)ρ(T1) + β̂2ρ(T1)[ρ(T0)− ρ(t̃)] + γ̂2ρ(T0)[ρ(T1)− ρ(t̃)] > 0.

From the above, we deduce that if ρ(t) ∼ U [0, 24], then ρ(t) = 1/24,∀t ∈ [0, 24] and
(T S0 , T

S
1 ) in (32) is a unique minimum over the feasible times.

C Derivations assuming T0 ≥ T1

In this Appendix, we denote the counterpart of the expressions derived assuming
T0 ≤ T1 with the superscript ‘sym’.

C.1 Counterpart of demands (3)

When T0 ≥ T1, D`,sym
0 and Dr,sym

0 are given by replacing the shares m` in (B.2) and mr

in (B.6) by msym
` =

∫ T1
0
ρ(t)dt and msym

r =
∫ 24

T0
ρ(t)dt, respectively. Regarding Dc,sym

0 ,
applying the same reasoning as in Appendix B.1, we get:

Û c
0 = Û − p̂0 −

θ

2
(x− h)2 − γ̂(T0 − t),

Û c
1 = Û − p̂1 −

θ

2
(1− x)2 − β̂(t− T1),

x̃c,sym(t) =
1

θ(1− h)
(p̂1 − p̂0)− (β̂T1 + γ̂T0)− (β̂ + γ̂)t

θ(1− h)
+

(1 + h)

2
;

Dc,sym
0 =

[
p1 − p0 − (βT1 + γT0) +

1 + h

2

]
msym
c + (β + γ)t̄symc , (C.1)

Dc,sym
1 =

[
p0 − p1 + (βT1 + γT0) +

1− h
2

]
msym
c − (β + γ)t̄symc ,

where msym
c =

∫ T0
T1
ρ(t)dt and t̄symc =

∫ T0
T1
t ρ(t)dt. Given that Dsym

0 = Dl,sym
0 +Dc,sym

0 +
Dr,sym

0 and Dsym
1 = 1−Dsym

1 , we have the following aggregate demands:

Dsym
0 = p1 − p0 +

1 + h

2
+ Φsym(T),

Dsym
1 = p0 − p1 +

1− h
2
− Φsym(T),

(C.2)

where the counterpart of the SDC difference (4) is given by:

Φsym(T) = γ(T1 − T0)msym
l − (βT1 + γT0)msym

c − β(T1 − T0)msym
r + (β + γ)t̄symc , (C.3)

where msym
l +msym

c +msym
r = 1.
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C.2 Counterpart of the covered market condition (2)

Following the same steps as in Appendix B.2, the covered market condition (2) is:

−θ
2

(1− h2) < p̂1 − p̂0 − γ̂(T0 − T1) ≤ p̂1 − p̂0 + β̂(T0 − T1) <
θ

2
(1− h)2. (C.4)

C.3 Proof of Lemma 2 when T0 ≥ T1

Consider Φsym(T) in Eq.(C.3). To compute ∂Φsym(T)/∂Ti for i = 0, 1, use termsmsym
l ,

msym
c , msym

r and t̄symc defined in Appendix C.1. Note first that:

∂msym
l

∂T0

= 0,
∂msym

c

∂T0

= ρ(T0),
∂msym

r

∂T0

= −ρ(T0),
∂t̄symc

∂T0

= T0ρ(T0),

∂msym
l

∂T1

= ρ(T1),
∂msym

c

∂T1

= −ρ(T1),
∂msym

r

∂T1

= 0,
∂t̄symc

∂T1

= −T1ρ(T1).

Using the above, we obtain:

∂Φsym(T)

∂T0

= (β + γ)msym
r − γ, ∂Φsym(T)

∂T1

= (β + γ)msym
` − β,

∂2Φsym(T)

∂T 2
0

= −(β + γ)ρ(T0),
∂2Φsym(T)

∂T 2
1

= (β + γ)ρ(T1).

where we use msym
` + msym

c = 1 − msym
r to get ∂Φsym(T)/∂T0 and msym

c + msym
r =

1−msym
` to get ∂Φsym(T)/∂T1. Again, setting each first derivative equal to zero leads

to T ∗0 = T ∗1 = F−1[β/(β + γ)].

C.4 Counterpart of the time game of Section 2.2.2

When T0 ≥ T1, by Proposition 2, the counterpart of the equilibrium demands (13) are
given by:

Dsym,∗
0 (T, τ ) =

1

6
[3 + h+ 2∆c̃+ 2Φsym(T)],

Dsym,∗
1 (T, τ ) =

1

6
[3− h− 2∆c̃− 2Φsym(T)],

(C.5)

and FOCs (19) become:

∂πsym,∗0 (T, τ )

∂T0

=
2

3
[(β + γ) msym

r − γ] Dsym,∗
0 (T, τ )− ∂K(T0)

∂T0

= 0,

∂πsym,∗1 (T, τ )

∂T1

= −2

3
[(β + γ) msym

l − β] Dsym,∗
1 (T, τ )− ∂K(T1)

∂T1

= 0,
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where msym
r and msym

` , defined in Appendix C.1, denote the share of travellers with
desired times earlier than T1 and later than T0, respectively. Consider the case where
∂K(Ti)/∂Ti = ki = 0 for i = 0, 1. Solving the above system of FOCs with respect to Ti
yields the counterpart of the equilibrium departure times (22):

F (T0) = F (T1) =
β

β + γ
⇒ T sym,∗|k0=k1=0 = F−1

(
β

β + γ

)
. (C.6)

Turning to the case where k0, k1 6= 0 in (18), the counterpart of (20) is:

F (Ti) =
β

β + γ
− 3ki

2(β + γ)Dsym,∗
i (T, τ )

, i = 0, 1. (C.7)

Assuming that a unique and interior solution exists for each Ti in (C.7), profit maxi-
mization requires the SOCs to hold, that is:

k2
i <

4

3
ρ(T sym,∗i )(β + γ)Dsym,∗3

i (Tsym,∗, τ ).

C.5 Counterpart of the social time cost minimization (29)

When T0 ≥ T1, the ŜDC
S
(T) term (29) becomes:

ŜDC
sym,S

(T) =

∫ T1

0

γ̂(T1 − t)ρ(t) dt+

∫ t̃sym

T1

β̂(t− T1)ρ(t) dt +∫ T0

t̃sym
γ̂(T0 − t)ρ(t) dt+

∫ 24

T0

β̂(t− T0)ρ(t) dt,

where t̃sym = (γ̂T0 + β̂T1)/(β̂ + γ̂). Then, the counterpart of FOCs (29) are:

∂ŜC
sym,S

(T)

∂T0

= γ̂m̃sym
r − β̂msym

r + k̂0 = 0,

∂ŜC
sym,S

(T)

∂T1

= γ̂msym
` − β̂m̃sym

` + k̂1 = 0,

(C.8)

where m̃sym
r =

∫ T0
t̃sym

ρ(t)dt, m̃sym
` =

∫ t̃sym
T1

ρ(t)dt and where msym
r and msym

` are given in
Appendix C.1. Using (C.8), we deduce the following second and cross-partial deriva-
tives:

∂2ŜC
S
(T)

∂T 2
0

= (β̂ + γ̂)ρ(T0)− γ̂2

β̂ + γ̂
ρ(t̃sym),

∂2ŜC
S
(T)

∂T 2
1

= (β̂ + γ̂)ρ(T1)− β̂2

β̂ + γ̂
ρ(t̃sym),

∂2ŜC
sym,S

(T)

∂Ti∂T−i
= − β̂γ̂

β̂ + γ̂
ρ(t̃sym), i = 0, 1.
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Setting the second derivatives larger than 0 and rearranging yields:

∂2ŜC
sym,S

(T)

∂T 2
0

=
(β̂ + γ̂)2

γ̂2
>
ρ(t̃sym)

ρ(T0)
,

∂2ŜC
sym,S

(T)

∂T 2
1

=
(β̂ + γ̂)2

β̂2
>
ρ(t̃sym)

ρ(T1)
.

Minimization requires the determinant of the Hessian matrix to be positive, i.e.,

2β̂γ̂ρ(T0)ρ(T1) + β̂2ρ(T0)[ρ(T1)− ρ(t̃sym)] + γ̂2ρ(T1)[ρ(T0)− ρ(t̃sym)] > 0.

When ρ(t) ∼ U [0, 24], then ρ(t) = 1/24, ∀t ∈ [0, 24] and the sufficient condition for
(global) minimum holds. With the latter distribution, the counterpart of the SCS

function in (29) is:

ŜC
sym,S

=
β̂(β̂ + 2γ̂)T 2

0 − 48β̂(β̂ + γ̂)T0 + γ̂(2β̂ + γ̂)T 2
1 − 2β̂γ̂T0T1 + 576β̂(β̂ + γ̂)

48(β̂ + γ̂)
+ K̂S(T).

Solving the FOCs yields the socially optimal departure times:

T sym,Si

∣∣∣
k̂0,k̂1 6=0

= T sym,Si

∣∣∣
k̂0=k̂1=0

− asymi k̂0 − bsymi k̂1, i = 0, 1,

where T sym,S0

∣∣∣
k̂0=k̂1=0

= 12
[
1 + β̂

β̂+γ̂

]
, T sym,S1

∣∣∣
k̂0=k̂1=0

= 12β̂

β̂+γ̂
, asym0 = 12(2β̂+γ̂)

β̂(β̂+γ̂)
> 0,

bsym0 = asym1 = 12

β̂+γ̂
> 0 and bsym1 = 12(β̂+2γ̂)

γ̂(β̂+γ̂)
> 0. Again, setting k̂0 = k̂1 = 0 simplifies

the analysis. Then, by using (C.6) and the uniform distribution, we get:

∆T sym0 = T sym,S0

∣∣∣
k̂0=k̂1=0

− T sym,∗|k̂0=k̂1=0 = 12
γ̂

β̂ + γ̂
,

∆T sym1 = T sym,S1

∣∣∣
k̂0=k̂1=0

− T sym,∗|k̂0=k̂1=0 = −12
β̂

β̂ + γ̂
.

Using T sym,Si

∣∣∣
k̂0=k̂1=0

in (C.7), we get an explicit pricing rule for the departure times

that holds with linear costs (18), i.e.,

k̂sym,S0 = − γ̂D
sym,S
0

3
, k̂sym,S1 =

β̂Dsym,S
1

3
.

where Dsym,S
i ≡ Dsym,∗

i (Tsym,S, τ ) and Tsym,S ≡ (T sym,S0

∣∣∣
k̂0=k̂1=0

, T sym,S1

∣∣∣
k̂0=k̂1=0

). The
schedule regulator should set a decreasing cost in the time of day for the carrier serving
facility 0 to get the late socially optimal service time and an increasing one for the
carrier operating at facility 1 to get the early socially optimal departure time.
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